基于多傳感器的人體生理狀態(tài)判別技術(shù)的研究
[Abstract]:In recent years, with the rapid development of biosensor technology and wearable technology, more and more wearable products used to monitor human life and health activities are coming into people's lives. It has become feasible to collect and record physical and health data on wearable devices, such as pulse, respiration, body temperature and so on. However, the amount of physiological signals in a continuous long time range is too large, which is not conducive to user analysis, observation and extraction of valuable information. Therefore, the purpose of this paper is to realize a simple and effective discriminant technique for extracting simple and effective information about the changes of human physiological state from the continuous and large amount of human physiological data. By using this technique, the physiological state of human body can be divided into two categories, one is the normal state, that is, the human body is in the state of resting, the other is the state of events, that is, the state of human body experiencing activity, external force stimulation or emotional change. In this method, the physiological state of human body at the same time is judged by using the discriminant mechanism of pulse, respiration and body temperature, and the classification result is given back to the user in the form of visual grade distribution map. The user can selectively pay attention to the physiological data in the corresponding time according to the level of their own state. In this paper, the method of setting threshold is used for respiratory signal and body temperature signal. By judging whether the respiration frequency extracted from the respiration wave and the temperature of the body temperature collected by the temperature sensor exceed the normal threshold range, the physiological state of the human body can be classified into two categories. For pulse signal, the method based on discrete wavelet transform is used to remove the high frequency noise and baseline drift. Two parameters, period and main wave height, are extracted from the time domain of pulse wave as input eigenvector of support vector machine (SVM), and two classification models are constructed by supervised learning training method. The physiological state of a person is classified from the point of view of pulse whether he is in a normal state or an event state. In this paper, the classification performance of SVM was statistically analyzed and evaluated through three groups of experiments: exercise, sleep and drinking, and it was proved that SVM has a good effect on the identification of physiological state of human body. The results of the three signals are fused and displayed, and the distribution of the human state level with time is displayed to the user by using the visualization software, which provides the user with an overall and concise perspective to observe the changes of his own physiological state.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP212;TN911.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王利軍;郭樹楷;呂實(shí)誠;;基于嵌入式人體生理信號監(jiān)測系統(tǒng)的設(shè)計(jì)[J];數(shù)字技術(shù)與應(yīng)用;2010年01期
2 張翔,汪漢新;人體生理聲音分析系統(tǒng)的設(shè)計(jì)[J];武漢化工學(xué)院學(xué)報(bào);2003年02期
3 涂巧玲;徐霞;;移動式人體生理體征監(jiān)測關(guān)鍵技術(shù)研究[J];微計(jì)算機(jī)信息;2007年04期
4 梁鐵;劉秀玲;郝真鳴;王洪瑞;;基于Eclipse的人體生理指標(biāo)融合系統(tǒng)[J];計(jì)算機(jī)測量與控制;2013年10期
5 張福君;周濱;呂實(shí)誠;;基于SOPC的人體生理信號發(fā)生器的設(shè)計(jì)[J];電腦學(xué)習(xí);2009年04期
6 高澤利;周建莉;瞿新剛;文小玲;;基于LabVIEW的人體生理信號檢測及處理系統(tǒng)設(shè)計(jì)[J];微計(jì)算機(jī)信息;2009年13期
7 蔣云飛;朱寶榮;;多功能人體生理鑒護(hù)儀[J];遙測遙控;1990年04期
8 ;人體生理現(xiàn)象揭秘[J];記者搖籃;2001年03期
9 孫上上;人體生理刺激反應(yīng)時間測試儀[J];電子技術(shù)應(yīng)用;1997年08期
10 ;[J];;年期
相關(guān)會議論文 前2條
1 楊和春;;中醫(yī)氣化理論與人體生理關(guān)系淺談[A];2002全國土家族苗族醫(yī)藥學(xué)術(shù)會議論文專輯[C];2002年
2 李霞;;人體生理電療法論壇的設(shè)想隨筆[A];中國針灸學(xué)會全國中青年針灸發(fā)展論壇論文匯編[C];2003年
相關(guān)碩士學(xué)位論文 前4條
1 張偉;基于WSN的人體生理參數(shù)處理方法[D];山東大學(xué);2015年
2 張少華;人體生理特征監(jiān)測可穿戴設(shè)備及數(shù)據(jù)傳輸技術(shù)研究[D];北京工業(yè)大學(xué);2015年
3 李思楠;基于多傳感器的人體生理狀態(tài)判別技術(shù)的研究[D];東北大學(xué);2014年
4 李艷文;人體生理指標(biāo)監(jiān)測分析系統(tǒng)的研究[D];天津大學(xué);2005年
,本文編號:2360574
本文鏈接:http://sikaile.net/kejilunwen/wltx/2360574.html