采用雙光柵多色儀的純轉(zhuǎn)動拉曼測溫激光雷達(dá):光機(jī)系統(tǒng)設(shè)計(jì)、研制和測量結(jié)果分析
[Abstract]:We successfully developed a set of pure-rotating Raman temperature measuring laser radar system. We designed a dual-grating multi-color instrument for radar's light-splitting system, which is used for extracting pure-rotating Raman signal and suppressing the stray light of elastic wavelength. In this paper, a method for calibrating a dual-grating multi-color instrument and checking its spectral extraction capability (central wavelength, receiving bandwidth) is presented for the first time. Our radar system has a high-power aperture product so that we can measure the atmospheric temperature more accurately at a greater height (~ 5-30km). The statistical uncertainty of the one-hour statistical uncertainty of the temperature profile accumulated at the height of 300m and 1 hour is not more than 0. 5K at -17km and no more than 2.0K at -263.3km. In this paper, the laser radar system is described in detail from three aspects: theory, experiment and data analysis. Introduction. Includes: pure rotational Raman temperature measurement principle and error source analysis (chapter 2); radar system design, calibration and inspection, system constant stability (chapter 3-5); temperature profile of radar, medium-high troposphere and atmospheric temperature change characteristics (Part 5-6) Chapter). Specific work summary The principle of pure rotational Raman temperature measurement is introduced from the radar equation, and the temperature measurement of radar is also analyzed. The error source of the two-grating multi-color instrument used by us is that the approximation error can in a case where the backward scattering ratio is relatively large, the leakage error is obvious, when the optical thickness of the two pure-rotating raman channels at the elastic wavelength is more than 6, and the optical thickness of the high-j channel is slightly larger than the optical thickness of the low-j channel, the optical thickness of the two pure-rotating raman channels can be well eliminated, Reducing the leakage error. The statistical error is the main source of the temperature measurement error. We summarize the principle of reducing the statistical error: choose the wideband reception as much as possible, and let the receiving bandwidth of the two channels The difference is as small as possible. 2. The development of the pure-rotating Raman laser radar system is introduced, and the double-grating is emphatically introduced. The optical path of the multi-color instrument is designed. The optical fiber coupler is determined by the experimental method and the theoretical calculation, respectively. in the invention, the optical axis of the lens in the double-grating multi-color instrument is taken as a reference, and the central axis of the end face of the optical fiber bundle array and the normal normal of the grating are respectively and which is adjusted to be coincident and parallel, on the basis of which At last, the spectral extraction capability of the multi-color instrument was examined. The deviation between the central wavelength and the theoretical value was found to be only 0.05-0.12nm. The calibration method is correct. By comparing the system constants obtained by multiple calibration, the uncertainty of the signal is found to be less affected by the stability of the system, and the external conditions The difference has a greater effect on it. 3. If there is an inversion layer in accordance with 4.5 -145.5km, it will The high-quality temperature data is divided into two groups. With a detailed analysis of the two night temperature profiles, there is no inversion layer, all the night The temperature structure is very similar in the troposphere. The average and maximum hourly temperature changes do not exceed 1 The temperature change of the stratosphere increases with the increase of the altitude, and the average and maximum hourly temperature changes are The changes of ~ 1-3K and ~ 2-6K. on the day to day, in the middle-low troposphere and the tropopause The change in the inversion layer is stronger than the one-hour change. In the case of an inversion layer, the temperature in the inversion layer changes significantly, and the average and maximum hourly temperature change is 1-1.. 6K and close to-3.0K. All the 1-hour temperature profiles all night are stacked together, and the height of the inversion layer will appear in the "trunk>" The " trunk> junction" and the inversion layer all night relative to the vertical movement of the shear layer of the wind. The center height and thickness of the inversion layer and the shear layer are very similar. In addition, the center height, thickness and strength of the inversion layer and the shear layer are more consistent with the time-height variation, and we conclude that the inverse temperature layer of 4.5-145.5km The results of the statistical analysis show that the temperature variation of the night temperature of the inversion layer is greater than that of the night without the inversion layer, and it is more than 4-12km and 15.-23km, resulting in greater temperature changes. a high-range, weft-to-wind shear. It is a process of vertical movement of the shear layer all night due to the inversion of the thermal layer due to strong shea
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:P406;TN958.98
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬玲玉;張衛(wèi)平;陳茂鑫;黃萌;郭月波;;雙光柵成像中的匯合級光能量[J];中國激光;2007年08期
2 陳水波;;雙光柵測速[J];大學(xué)物理;2008年01期
3 張衛(wèi)平;李洪亮;吳亞麗;;雙光柵成像效應(yīng)中物像位置的橫向偏移[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2009年02期
4 易靜;;利用雙光柵開展設(shè)計(jì)性實(shí)驗(yàn)的探討[J];天津城市建設(shè)學(xué)院學(xué)報;2009年04期
5 李柱峰;徐秀平;;雙光柵彈性模量測量實(shí)驗(yàn)方法[J];物理實(shí)驗(yàn);2013年01期
6 杜佩之;高熠鑫;高暢;周進(jìn);;動態(tài)雙光柵測量金屬熱膨脹系數(shù)[J];物理實(shí)驗(yàn);2013年08期
7 韓光耀,張毓昌,易明,黃宗華,楊選民;激光的雙光柵移頻效應(yīng)理論及應(yīng)用[J];中國激光;1985年06期
8 謝建平,姚q,明海;雙光柵法測量微小位移[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;1986年01期
9 姜謙,俞祖和,米辛,張治國,傅盤銘;用時間延遲激光感生雙光柵方法測量兩束光的相對相位變化[J];光學(xué)學(xué)報;1993年02期
10 余飛鴻,謝達(dá),梁蔭中;矩陣光學(xué)與單雙光柵成象研究[J];光子學(xué)報;1993年04期
相關(guān)會議論文 前2條
1 張衛(wèi)平;胡立坤;盧泉;曾憲金;;雙光柵色散-匯合光譜成像儀的單片機(jī)控制改造與實(shí)現(xiàn)[A];“廣東省光學(xué)學(xué)會2013年學(xué)術(shù)交流大會”暨“粵港臺光學(xué)界產(chǎn)學(xué)研合作交流大會”會議手冊論文集[C];2013年
2 呂新夫;高翔;周惠君;江洪建;王思慧;;用兩種可行的光學(xué)方法測量磁致伸縮系數(shù)[A];第六屆全國高等學(xué)校物理實(shí)驗(yàn)教學(xué)研討會論文集(下冊)[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 賈靜宇;采用雙光柵多色儀的純轉(zhuǎn)動拉曼測溫激光雷達(dá):光機(jī)系統(tǒng)設(shè)計(jì)、研制和測量結(jié)果分析[D];武漢大學(xué);2014年
2 鄧光晟;雙光柵繞射輻射THz源高頻系統(tǒng)的研究[D];合肥工業(yè)大學(xué);2014年
3 馮金揚(yáng);表面應(yīng)力敏感微梁的設(shè)計(jì)制作及雙光柵干涉測量方法[D];清華大學(xué);2013年
相關(guān)碩士學(xué)位論文 前6條
1 周亮;人工表面等離子體結(jié)構(gòu)的研究及應(yīng)用[D];桂林電子科技大學(xué);2015年
2 魏培培;基于雙光柵干涉的三維位移測量技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
3 劉磊;基于雙光柵色散—匯合光譜成像效應(yīng)的濾波成像研究[D];廣西大學(xué);2015年
4 楊路路;THz雙光柵繞射輻射器件高頻系統(tǒng)研究[D];合肥工業(yè)大學(xué);2014年
5 張金華;基于雙光柵干涉的位移測量系統(tǒng)設(shè)計(jì)[D];華中科技大學(xué);2013年
6 董必良;W波段準(zhǔn)光腔輻射源關(guān)鍵技術(shù)的研究[D];合肥工業(yè)大學(xué);2014年
,本文編號:2356888
本文鏈接:http://sikaile.net/kejilunwen/wltx/2356888.html