基于去噪和精英遺傳聚類算法的SAR圖像變化檢測
[Abstract]:Image change detection is based on the analysis of two images obtained in the same area at different times, and the change information is obtained. Because of the high resolution of synthetic Aperture Radar (Synthetic Aperture Radar,SAR), it has the characteristics of all-weather and all-weather at the same time. Easy access to images of the same area at different times, Therefore, SAR image has developed into the main component of remote sensing image change detection. The change detection of SAR image is to compare the remote sensing images of the same area at different time to get the difference map. Then using the gray value of the difference image, the image is divided into the change region and the invariant area. The change detection of SAR image is used in environmental monitoring, disaster estimation, land use, forest logging monitoring, Crop growth monitoring and other aspects have a very wide range of applications. In this paper, the existing SAR image change detection methods are studied, such as long time consuming and low precision. The main contents are as follows: 1. A change detection method for SAR images based on histogram and elite genetic clustering algorithm is proposed. In this method, histogram operation is used to reduce the number of samples, and the processing time is effectively reduced. Then, the initial population and the fitness function of genetic algorithm are initialized by fuzzy C-means (FCM). The optimal solution of genetic algorithm is selected by using an elite strategy selection mechanism. The optimal solution is regarded as the initial clustering center of FCM, and the local optimization ability of FCM and the global searching ability of genetic algorithm are combined to accelerate the convergence speed of the algorithm. Effectively improves the accuracy of the algorithm. 2. A change detection method for SAR images based on mean shift and elite genetic clustering algorithm is proposed. The main problem of SAR image processing is speckle noise. In order to reduce the influence of noise on the change detection results, we use mean shift to de-noise the difference image of SAR image. In the real SAR image change detection experiment, by comparing with some classical algorithms, the effectiveness of this method for SAR image change detection is fully verified. 3. In this paper, an improved method of SAR image change detection based on nonlocal mean is proposed. This algorithm is mainly aimed at the non-local mean Gao Si kernel weighted Euclidean distance, which is not the most effective for extracting the feature information of the image and suppressing the multiplicative speckle noise. Moreover, using exponential function to calculate the weight can not deal with the edge information of the image well. Using the Euclidean distance weighted by Fourier kernel, the method of measuring similarity value based on logarithmic ratio distance and the weight of two-dimensional Gao Si function. An improved nonlocal mean algorithm is proposed and applied to SAR image change detection to verify its performance.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉建忠;;圖像邊緣的數(shù)學(xué)結(jié)構(gòu)分析[J];軟件;2011年05期
2 陳文兵;張小磊;;基于圖像邊緣的能見度計(jì)算方法[J];微型電腦應(yīng)用;2009年04期
3 曾友州;胡瑩;曾偉一;鄭曉霞;;提取數(shù)字圖像邊緣的算法比較[J];成都航空職業(yè)技術(shù)學(xué)院學(xué)報(bào);2009年04期
4 潘衛(wèi)國;鮑泓;何寧;;一種傳統(tǒng)中國書畫圖像的二分類方法[J];計(jì)算機(jī)科學(xué);2012年03期
5 周濤;陸惠玲;拓守恒;馬競先;楊德仁;;基于非凸區(qū)域下近似的圖像邊緣修補(bǔ)算法[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
6 唐亮;唐娉;閻福禮;鄭柯;;HJ-1 CCD圖像自動(dòng)幾何精糾正系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[J];計(jì)算機(jī)應(yīng)用;2012年S2期
7 宋建中;;噴霧圖像的自動(dòng)分析[J];光學(xué)機(jī)械;1988年04期
8 張錦華;孫挺;;引入像點(diǎn)融合度修補(bǔ)的圖像邊緣化參差拼接實(shí)現(xiàn)[J];微電子學(xué)與計(jì)算機(jī);2014年08期
9 張曉清;;摳圖另一法[J];數(shù)字世界;2002年11期
10 潘泓;夏良正;;一種基于圖像邊緣的矩計(jì)算方法[J];模式識(shí)別與人工智能;2003年03期
相關(guān)會(huì)議論文 前10條
1 陸成剛;陳剛;張但;閔春燕;;圖像邊緣的優(yōu)化模型[A];'2002系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第四卷)[C];2002年
2 王偉凝;余英林;張劍超;;圖像的動(dòng)感特征分析[A];第一屆中國情感計(jì)算及智能交互學(xué)術(shù)會(huì)議論文集[C];2003年
3 韓焱;王明泉;宋樹爭;;工業(yè)射線圖像的退化與恢復(fù)方法[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(下冊)[C];2001年
4 王強(qiáng);王風(fēng);;一種保持圖像幾何特征的去噪模型[A];中國通信學(xué)會(huì)第五屆學(xué)術(shù)年會(huì)論文集[C];2008年
5 王培珍;楊維翰;陳維南;;圖像邊緣信息的融合方案研究[A];中國圖象圖形學(xué)會(huì)第十屆全國圖像圖形學(xué)術(shù)會(huì)議(CIG’2001)和第一屆全國虛擬現(xiàn)實(shí)技術(shù)研討會(huì)(CVR’2001)論文集[C];2001年
6 李大鵬;禹晶;肖創(chuàng)柏;;圖像去霧的無參考客觀質(zhì)量評測方法[A];第十五屆全國圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2010年
7 孟晉麗;張毅;金林;;圖像中混合噪聲的小波域?yàn)V除方法[A];2007'儀表,,自動(dòng)化及先進(jìn)集成技術(shù)大會(huì)論文集(一)[C];2007年
8 漆琳智;張超;吳向陽;;引導(dǎo)濾波的單幅圖像前景精確提取[A];浙江省電子學(xué)會(huì)2013學(xué)術(shù)年會(huì)論文集[C];2013年
9 張明慧;;基于模糊蒙片算法的CR圖像邊緣增強(qiáng)[A];第六屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集(1)[C];2008年
10 王亮亮;李明;高昕;;強(qiáng)模糊空間目標(biāo)圖像邊緣獲取方法研究[A];第九屆全國光電技術(shù)學(xué)術(shù)交流會(huì)論文集(下冊)[C];2010年
相關(guān)重要報(bào)紙文章 前10條
1 吳飛;無邊距照片打印三部曲[N];中國電腦教育報(bào);2003年
2 艾思平翻譯;視頻編碼軟件CCE SP2操作指南(9)[N];電子報(bào);2009年
3 ;B超術(shù)語解釋[N];農(nóng)村醫(yī)藥報(bào)(漢);2008年
4 ;圖像質(zhì)量調(diào)整秘技[N];電腦報(bào);2001年
5 馬駿睿 皓月;制作版畫效果圖片[N];中國攝影報(bào);2007年
6 艾思平翻譯;視頻編碼軟件CCE SP2操作指南(14)[N];電子報(bào);2009年
7 西安 張正倉;I~(2)C總線控制的HG-2220AV液晶屏視頻信號(hào)驅(qū)動(dòng)板[N];電子報(bào);2003年
8 ;令挑剔的人也刮目相看[N];中國電子報(bào);2001年
9 侯杰;國產(chǎn)芯片進(jìn)軍移動(dòng)多媒體市場[N];人民郵電;2003年
10 于亮、阿鯤;技術(shù)“掃”天下[N];中國計(jì)算機(jī)報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 梁福來;低空無人機(jī)載UWB SAR增強(qiáng)成像技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 周靜;基于憶阻器的圖像處理技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
3 賈茜;基于時(shí)—空域插值的圖像及視頻上采樣技術(shù)研究[D];武漢大學(xué);2014年
4 李照奎;人臉圖像的魯棒特征表示方法研究[D];武漢大學(xué);2014年
5 郝紅星;基于干涉相位圖像構(gòu)建數(shù)字高程模型的關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
6 楊小義;圖像特征識(shí)別算法及其在聾人視覺識(shí)別中的應(yīng)用研究[D];重慶大學(xué);2015年
7 王玉明;SAR圖像地雷場檢測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
8 溫景陽;圖像大容量、低失真可逆信息隱藏技術(shù)研究[D];蘭州大學(xué);2015年
9 李林;基于概率圖模型的圖像整體場景理解方法研究[D];電子科技大學(xué);2014年
10 馮景;基于SAR圖像的海面溢油檢測研究[D];北京理工大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 李鵬遠(yuǎn);圖像檢索算法研究及其在互聯(lián)網(wǎng)教育中的應(yīng)用[D];華南理工大學(xué);2015年
2 萬燕英;微聚焦X-ray圖像自適應(yīng)正則化去噪方法[D];華南理工大學(xué);2015年
3 毛雙艷;基于梯度域的圖像風(fēng)格化渲染方法的研究及其應(yīng)用[D];華南理工大學(xué);2015年
4 向訓(xùn)文;RGB-D圖像顯著性檢測研究[D];華南理工大學(xué);2015年
5 曾旭;基于聚類和加權(quán)非局部的圖像稀疏去噪方法研究[D];天津理工大學(xué);2015年
6 熊楊超;圖像美學(xué)評價(jià)及美學(xué)優(yōu)化研究[D];華南理工大學(xué);2015年
7 王艷;圖像視覺顯著性檢測方法及應(yīng)用的研究[D];華南理工大學(xué);2015年
8 鄭露萍;圖像二階微分特征提取及人臉識(shí)別應(yīng)用研究[D];昆明理工大學(xué);2015年
9 王思武;基于太陽圖像的特征提取和檢索[D];昆明理工大學(xué);2015年
10 曹靜;基于暗通道先驗(yàn)算法的圖像去霧處理[D];海南大學(xué);2015年
本文編號(hào):2352075
本文鏈接:http://sikaile.net/kejilunwen/wltx/2352075.html