基于統(tǒng)計判決的分類器設計及在雷達目標識別中的應用
[Abstract]:With the rapid development of science and technology and the emergence of large-scale high-dimensional data, pattern classification has been widely paid attention to and applied in more and more fields. On the basis of the latest research results at home and abroad, this paper focuses on multi-class classification and class classification. 1. The second chapter introduces the existing multi-class classifiers and a class of classifiers. 1) the relation between Bayesian classifier, mutual information criterion, mutual information and Bayesian error rate is introduced in turn. From this, the information discriminant analysis based on mutual information criterion (IDA) and other related multi-class classifiers are elicited. 2) for a class of classifiers, two kinds of classifiers, support vector domain description (SVDD) and support vector machine (SVM), are introduced. Finally, several generally accepted performance evaluation indexes of classifier are introduced. 2. In order to solve the problem of high dimensional estimation error in IDA, a multi-class classifier based on linear statistical model and mutual information criterion is proposed in chapter 3. The classifier uses linear statistical model to describe the subspace statistical structure of observed data, uses mutual information criterion to constrain the separability of subspace, and optimizes logarithmic likelihood function and mutual information function by jointly optimizing logarithmic likelihood function and mutual information function. The optimal transformation matrix and noise variance are obtained. The classifier can directly obtain the optimal transformation matrix, which can describe the observation data as accurately as possible while making the subspace strongly separable. Based on synthetic data, the simulation results of (UCI) common data and radar measured data at UCLA Irvine verify the good classification performance and robustness of the classifier. In order to solve the problem of model selection in the existing class of classifiers, we propose an infinite Bayesian class of SVM classifiers in chapter 4. First, the existing SVM is improved by normalized function, and then the improved SVM is expressed by probability model with the help of data enhancement technique, and a Bayesian SVM classifier is obtained. Finally, an infinite Bayesian SVM classifier is obtained by extending the Bayesian class of SVM by using the (DP) infinite mixed expert model of the Dirichlet process. The classifier does not need manual intervention to set parameters, and can automatically adapt to the change of data, and automatically learn model parameters to realize model selection. Synthetic data, UCI common data and radar data show that the classifier has good classification performance.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN957.52
【共引文獻】
相關期刊論文 前10條
1 陳玉明;吳克壽;孫金華;;基于知識粒度的異常數(shù)據(jù)挖掘算法[J];計算機工程與應用;2012年04期
2 唐成龍;邢長征;;基于數(shù)據(jù)分區(qū)和網(wǎng)格的離群點挖掘算法[J];計算機應用;2012年08期
3 陳蓉;李艷萍;;一種基于離群點的聚類迭代檢測算法[J];科學技術與工程;2012年35期
4 陳玉明;吳克壽;李向軍;;一種基于信息熵的異常數(shù)據(jù)挖掘算法[J];控制與決策;2013年06期
5 楊福萍;王洪國;董樹霞;牛家洋;丁艷輝;;基于聚類劃分的兩階段離群點檢測算法[J];計算機應用研究;2013年07期
6 李俊;;底層網(wǎng)絡潛在危險數(shù)據(jù)的未激活狀態(tài)挖掘模型[J];科技通報;2015年03期
7 鄒勁松;唐旭;;基于粗糙集的圖像隱藏信息檢測改進方法[J];測控技術;2015年04期
8 程超;張漢敬;景志敏;陳明;矯磊;楊立新;;基于離群點算法和用電信息采集系統(tǒng)的反竊電研究[J];電力系統(tǒng)保護與控制;2015年17期
9 莫倩;楊珂;;網(wǎng)絡水軍識別研究[J];軟件學報;2014年07期
10 陳穎悅;陳玉明;;基于信息熵與蟻群優(yōu)化的屬性約簡算法[J];小型微型計算機系統(tǒng);2015年03期
相關碩士學位論文 前10條
1 李愛春;Web挖掘在檢測網(wǎng)絡廣告欺詐行為中的研究與應用[D];廣東工業(yè)大學;2011年
2 吳國洋;GML時空離群點挖掘技術研究[D];江西理工大學;2011年
3 孫曉博;基于粗糙集理論的聚類算法研究[D];湖南農業(yè)大學;2011年
4 楊金偉;基于距離和信息熵的不確定異常點檢測研究[D];云南大學;2011年
5 路亮;基于高維空間目標類幾何覆蓋模型的一類分類器研究[D];燕山大學;2010年
6 張遠方;基于密度的局部離群點挖掘算法研究[D];廣西大學;2011年
7 葉振春;實兵對抗演習評估系統(tǒng)中數(shù)據(jù)清理方法研究[D];解放軍信息工程大學;2011年
8 洪弘;數(shù)據(jù)挖掘技術在中藥水提液膜分離中的應用研究[D];南京中醫(yī)藥大學;2012年
9 甘桔;基于d-近鄰聚類的證券時間序列奇異點研究[D];昆明理工大學;2012年
10 高祖康;基于數(shù)據(jù)挖掘的商業(yè)銀行貸款信用評級[D];南京理工大學;2013年
,本文編號:2340406
本文鏈接:http://sikaile.net/kejilunwen/wltx/2340406.html