高分辨率SAR圖像車輛目標分形特征提取技術
[Abstract]:With the rapid development of synthetic Aperture Radar (SAR) technology and the diversification of loading platform, real-time monitoring of battlefield environment has become possible. Especially when the resolution of SAR image reaches sub-decimeter level, it has the ability of fast detection and recognition of battlefield vehicle targets (such as tanks, armored vehicles, trucks, missile launchers, etc.). Therefore, how to realize vehicle target interpretation based on high-resolution SAR images has become a key problem in battlefield information processing. Target feature extraction technology is the core of vehicle target interpretation processing in SAR images. The distinguishing ability and universality of the extracted features greatly affect the false alarm rate and classification accuracy of vehicle target identification in SAR images. Aiming at the problem of high false alarm probability in the process of vehicle target detection in SAR images, this paper analyzes the phenomenological differences between vehicle targets and background objects on SAR images. The fractal theory is used to realize the quantitative representation of the phenomenological characteristics of the above differences and to distinguish the vehicle objects from the natural features. The basic concept, physical properties, research status and development trend of fractal theory are reviewed in this paper. Combined with the complex and variable backscattering characteristics of the object in the SAR imaging process, the pixel intensity of the vehicle object presents the characteristics of sharp fluctuation and obvious gap size on the SAR image. The limitation of Euclidean geometry in describing the above phenomena is pointed out. Based on the fractal theory, the physical quantities of vehicle target features are summarized, such as fractal dimension feature, extended fractal feature and clearance feature. Then, the paper focuses on how to extract various clearance features of vehicle targets based on fractal theory. Based on the analysis of the existing gap degree features, a double variance gap degree feature is proposed in this paper. This feature defines the box mass as the variance of the pixel amplitude in the box, then calculates the standard variance of the box mass, and obtains the double variance of the pixel set in the whole slice. The comparison and analysis of various measured data show that the characteristics of double variance gap degree can improve the performance of vehicle target identification in SAR images and have good stability. By mining the significant differences between vehicle targets and natural objects on high resolution SAR images, a new feature vector of high dimensional stratified clearance degree is proposed based on fractal theory. The feature vector can quantitatively describe the clearance degree of vehicle target edge contour and the irregularity of target pixels at different scales, and can be used to eliminate false alarm generated by natural objects in the process of target extraction. In the calculation of the feature vector, the linear transformation of the measured slice data is firstly carried out to unify the dynamic range of the gray level of the pixel. Then, the pixel amplitude variance of each layer is taken as the one dimensional component of the feature vector of high dimensional stratification gap degree. Finally, a fuzzy C-means clustering method is used to deal with the feature vectors of high dimensional stratified clearance degree, and the membership function is used to identify the vehicle objects from the background objects. In this paper, simulated SAR image data, MSTAR database and domestic independent airborne SAR image data are used to test the discriminant performance of various gap features extracted in this paper, and to compare and analyze them.
【學位授予單位】:國防科學技術大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN957.52
【相似文獻】
相關期刊論文 前10條
1 魏晗;張長江;胡敏;;紅外車輛目標的自動模糊分割[J];光電工程;2008年08期
2 黃建清;李中益;張利珍;;基于視頻車輛目標檢測的陰影去除的研究[J];廣西輕工業(yè);2007年05期
3 計科峰;邢相薇;鄒煥新;李仁杰;;基于陰影的SAR圖像車輛目標三維特征提取[J];雷達科學與技術;2011年06期
4 姜越鵬,安鋼;車輛目標的計算機模式識別[J];測試技術學報;1997年02期
5 李禹;計科峰;吳永輝;粟毅;;一種SAR圖像車輛目標鑒別特征及其提取方法[J];遙感學報;2009年02期
6 遲健男;張朝暉;周楠楠;郝彥爽;;基于特征的車輛目標復合探測方法研究[J];儀器儀表學報;2008年12期
7 李禹;計科峰;吳永輝;粟毅;;高分辨率SAR圖像車輛目標幾何特征提取方法[J];系統(tǒng)工程與電子技術;2009年01期
8 楊岢銘;王懷軍;李禹;;基于RM算法的車輛目標SAR精細仿真成像[J];計算機工程與應用;2012年26期
9 李征,徐欣,游志勝;使用弱反光信息定位車輛目標[J];激光雜志;2002年05期
10 王金玉;楊圓圓;;基于遺傳算法的紅外車輛目標模糊增強[J];科學技術與工程;2009年10期
相關博士學位論文 前1條
1 李彥兵;基于微多普勒效應的運動車輛目標分類研究[D];西安電子科技大學;2013年
相關碩士學位論文 前10條
1 姚偉;基于視頻的車流量檢測系統(tǒng)研究與實現(xiàn)[D];南昌航空大學;2015年
2 方圓;基于視覺顯著性的紅外運動車輛目標檢測[D];華中科技大學;2014年
3 申鵬;行車安全自動檢測關鍵技術研究與實現(xiàn)[D];電子科技大學;2016年
4 閆國偉;車路協(xié)同系統(tǒng)中基于部件的車輛目標檢測方法研究[D];長安大學;2016年
5 黃凱;高分辨率SAR圖像車輛目標分形特征提取技術[D];國防科學技術大學;2014年
6 黃宇;車輛目標類型識別算法研究與實現(xiàn)[D];電子科技大學;2006年
7 范凱波;基于幾何特征的車輛目標分類研究[D];天津理工大學;2012年
8 張曉利;衛(wèi)星影像中城市道路區(qū)域車輛目標提取方法研究[D];北京交通大學;2015年
9 高浩軍;視頻圖像序列中車輛目標的檢測與識別研究[D];揚州大學;2007年
10 徐佳玉;交通信息采集系統(tǒng)中的車輛目標檢測與識別[D];中南大學;2005年
,本文編號:2332653
本文鏈接:http://sikaile.net/kejilunwen/wltx/2332653.html