聲矢量陣校正及測(cè)向技術(shù)研究
[Abstract]:Compared with the acoustic pressure array, the acoustic vector array overcomes the fuzzy problem of the left and right sides, extends the aperture of the base array, reduces the interference background and the detection threshold, and has obvious advantages in the case of the on-line array, the plane array or the small array element number. Based on the above points, the acoustic vector array signal processing technology is one of the hot spots in the underwater acoustic field, and the United States and Russia strongly study how to apply the acoustic vector array to naval equipment for the detection and localization of underwater targets. This paper mainly studies the correction of the acoustic vector array and the direction-finding technique. The high resolution performance of a large number of acoustic vector array direction finding techniques is obtained on the premise of the ideal array flow pattern, and in the actual situation, the acoustic vector array often has a plurality of array errors, and the array errors will cause the high-resolution direction-finding algorithm performance of the acoustic vector array to be severely degraded and even become invalid. Therefore, it is essential to perform array correction on the acoustic vector array before using the high-resolution direction-finding technique of the acoustic vector array. In the case of acoustic vector array direction finding, most of the current position estimation algorithms of the acoustic vector array have a large amount of computation, which greatly increases the cost and burden of the system and becomes the bottleneck of some systems engineering. In addition, in the underwater acoustic environment, there is often a coherent source, and it is of great significance to study the multi-object resolution of the coherent source of the acoustic vector array to the acoustic vector array direction finding technology. The main contents of this paper are as follows: 1. Based on the multi-level Wiener filter (MSWF), an SMSWF (Simplified Multi-Stage Wiener Filter) algorithm based on multi-level Wiener filter (MSWF) is proposed. The SMSWF algorithm estimates the array error parameters by using the orientation of the correction source and the waveform information, and does not need the covariance matrix calculation and the characteristic value decomposition process, greatly reduces the calculation amount, and has the same array error parameter estimation performance as the characteristic decomposition method. It is found that when a single source is incident on the array and the source waveform is known, the signal subspace obtained by the SMSWF algorithm is equivalent to the signal subspace estimated by the feature decomposition method, so that the calculation amount of the signal processing method based on the feature decomposition can be greatly reduced. A large number of computer simulation and pool data processing results verify the superiority of the SMSWF algorithm. In the engineering application, the acoustic vector array often has a matrix element attitude error. In order to fully understand and correct the matrix element attitude error, the influence of the array element attitude error on the beam pattern of the acoustic vector array is analyzed, and the influence of the matrix element attitude error on the MUSIC algorithm is simulated and analyzed. In the actual working environment, since the active correction algorithm is often limited, a self-correction algorithm for the attitude error of the acoustic vector array is proposed, which can realize the joint estimation of the matrix element attitude error parameter and the source DOA, and has good parameter estimation precision and fast convergence speed. The superiority of this self-tuning algorithm is verified by theoretical analysis and computer simulation. In this paper, a V-MSWF algorithm and a PV-MSWF algorithm are proposed to solve the problem of the high-resolution position estimation algorithm of the acoustic vector array. The V-MSWF algorithm is an extension of the scalar array MSWF algorithm in the acoustic vector array. The PV-MSWF algorithm is based on the combined information processing based on the sound pressure vibration speed, the electronic rotation vector of the reference array element is selected as the desired signal, and the signal subspace is quickly estimated by using the multi-level Wiener filter (MSWF). The algorithm is based on the principle of the coherence of the sound pressure and the vibration velocity of the vector sensor, and makes full use of the combined anti-interference ability of the sound pressure vibration speed, and effectively suppresses the isotropic noise. the two algorithms do not need to calculate the cross-covariance matrix of the acoustic vector array, and the characteristic value decomposition is not needed, so that the calculation amount is greatly reduced. The results of computer simulation and pool test verify the DOA estimation performance of the V-MSWF algorithm and the PV-MS WF algorithm. The PVFS (Particle Velocity Field Smoothing) algorithm based on the acoustic vector array is an effective coherent source DOA estimation algorithm, but when a large number of coherent sources are present, the performance of the algorithm is drastically reduced or even ineffective. On the basis of the PVFS algorithm, a matrix-square-Smoothing-PVFS algorithm is proposed, which is an improvement of the PVFS algorithm. and greatly increases the number of its resolved coherent sources. The results of computer simulation and pool test show that the MSS-PVFS algorithm has good DOA estimation performance.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.7;TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 由延軍,黃建國(guó),李雄;高分辨方位估計(jì)克拉美-羅界的改進(jìn)算法[J];微處理機(jī);2005年03期
2 李強(qiáng);李志舜;穆海燕;;分布式目標(biāo)方位估計(jì)新方法[J];彈箭與制導(dǎo)學(xué)報(bào);2005年SD期
3 楊旭東;黃建國(guó);湯琦;;方位估計(jì)的克拉美-羅界改進(jìn)算法研究[J];探測(cè)與控制學(xué)報(bào);2006年01期
4 馬培鋒;嚴(yán)勝剛;;分布式目標(biāo)方位估計(jì)的一種改進(jìn)算法[J];彈箭與制導(dǎo)學(xué)報(bào);2007年03期
5 周敏;;相干分布式目標(biāo)的方位估計(jì)[J];魚雷技術(shù);2008年01期
6 肖龍帥;黃華;夏建剛;李靈;;壓縮傳感方位估計(jì)[J];通信技術(shù);2009年11期
7 宋海巖;樸勝春;秦進(jìn)平;;淺海遠(yuǎn)程目標(biāo)穩(wěn)健方位估計(jì)方法研究[J];信號(hào)處理;2012年11期
8 馮西安;黃建國(guó);;水下寬帶目標(biāo)方位估計(jì)的克拉美-羅界[J];兵工學(xué)報(bào);2007年03期
9 李強(qiáng);李志舜;;基于低階近似分布源的目標(biāo)方位估計(jì)[J];電聲技術(shù);2007年12期
10 侯云山;黃建國(guó);張立杰;金勇;;一種新的淺海目標(biāo)方位估計(jì)方法[J];西安交通大學(xué)學(xué)報(bào);2008年10期
相關(guān)會(huì)議論文 前10條
1 鄢社鋒;侯朝煥;馬遠(yuǎn)良;;基于空域預(yù)濾波的目標(biāo)方位估計(jì)方法[A];2005年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
2 馬培鋒;嚴(yán)勝剛;;相干分布源的方位估計(jì)[A];中國(guó)聲學(xué)學(xué)會(huì)2007年青年學(xué)術(shù)會(huì)議論文集(上)[C];2007年
3 馬艷;孔燕;杜金香;;最大似然方位估計(jì)的迭代求解[A];2011'中國(guó)西部聲學(xué)學(xué)術(shù)交流會(huì)論文集[C];2011年
4 蔣飚;孫長(zhǎng)瑜;;噪聲方差匹配高分辨方位估計(jì)算法研究[A];中國(guó)聲學(xué)學(xué)會(huì)2003年青年學(xué)術(shù)會(huì)議[CYCA'03]論文集[C];2003年
5 許策;章新華;夏志軍;宋元;;基于旋轉(zhuǎn)不變技術(shù)的目標(biāo)方位估計(jì)算法[A];中國(guó)聲學(xué)學(xué)會(huì)2007年青年學(xué)術(shù)會(huì)議論文集(下)[C];2007年
6 陳鵬;陳航;;基于最小模方法的相干源方位估計(jì)[A];2004年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
7 李強(qiáng);李志舜;;一種新的非相干分布源模型及方位估計(jì)方法[A];中國(guó)聲學(xué)學(xué)會(huì)2007年青年學(xué)術(shù)會(huì)議論文集(上)[C];2007年
8 張德明;郭良浩;張仁和;;寬帶聲源方位估計(jì)的聚焦最小方差方法[A];2004年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
9 張本輝;章新華;劉家軒;;矩陣預(yù)濾波目標(biāo)方位估計(jì)方法[A];2011'中國(guó)西部聲學(xué)學(xué)術(shù)交流會(huì)論文集[C];2011年
10 和斌;申曉紅;;體積陣恒定束寬及高分辨方位估計(jì)的實(shí)驗(yàn)研究[A];2011'中國(guó)西部聲學(xué)學(xué)術(shù)交流會(huì)論文集[C];2011年
相關(guān)博士學(xué)位論文 前5條
1 張柯;聲矢量陣校正及測(cè)向技術(shù)研究[D];哈爾濱工程大學(xué);2014年
2 曾耀平;被動(dòng)多目標(biāo)分辨與方位估計(jì)技術(shù)研究[D];西北工業(yè)大學(xué);2016年
3 李強(qiáng);分布源目標(biāo)方位估計(jì)研究[D];西北工業(yè)大學(xué);2007年
4 馮杰;穩(wěn)健波束形成與高分辨方位估計(jì)技術(shù)研究[D];西北工業(yè)大學(xué);2006年
5 宋海巖;具有高穩(wěn)健性的淺海目標(biāo)方位估計(jì)方法研究[D];哈爾濱工程大學(xué);2011年
相關(guān)碩士學(xué)位論文 前9條
1 沈小正;基于壓縮感知理論的聲矢量陣方位估計(jì)方法研究[D];江蘇科技大學(xué);2016年
2 李雄;基于蒙特卡羅方法的高分辨方位估計(jì)新方法研究[D];西北工業(yè)大學(xué);2005年
3 孫毅;基于貝葉斯原理和蒙特卡羅方法的高分辨方位估計(jì)新方法研究[D];西北工業(yè)大學(xué);2003年
4 楊海;分布式目標(biāo)建模及其高分辨方位估計(jì)[D];西北工業(yè)大學(xué);2001年
5 賈偉娜;水下多目標(biāo)高分辨方位估計(jì)技術(shù)研究[D];杭州電子科技大學(xué);2013年
6 魯瑛;貝葉斯高分辨方位估計(jì)方法的性能分析與應(yīng)用研究[D];西北工業(yè)大學(xué);2001年
7 周寧;寬帶源方位估計(jì)算法研究[D];河南大學(xué);2010年
8 侯穎妮;水下多目標(biāo)高分辨方位估計(jì)的關(guān)鍵技術(shù)研究[D];西北工業(yè)大學(xué);2007年
9 華洋;子空間相交方位估計(jì)方法性能分析[D];中國(guó)海洋大學(xué);2008年
,本文編號(hào):2323123
本文鏈接:http://sikaile.net/kejilunwen/wltx/2323123.html