基于循環(huán)譜的信號參數(shù)估計(jì)與調(diào)制方式識別
[Abstract]:Modulation mode identification and parameter estimation of communication signals are of great significance for military electronic countermeasures and civil spectrum regulation. Due to the complexity and unpredictability of wireless communication environment, the traditional methods of parameter estimation and modulation recognition are difficult to achieve the desired results under the condition of low signal-to-noise ratio (SNR). The signal processing based on cyclic spectrum analysis has strong ability to suppress noise, which has been widely used in parameter estimation and feature parameter extraction, but there are still many problems in the theory of cyclic spectrum analysis. After reading the latest ideas and researches at home and abroad, this paper studies some new methods for parameter estimation and modulation recognition. In this paper, the cyclic spectral periodic diagrams of several commonly used digital and analog modulated signals are first analyzed, and the influence of signal carrier frequency, symbol rate and frequency resolution on cyclic spectrum estimation is analyzed by frequency domain smoothing algorithm. A joint cross section search algorithm based on cyclic spectrum is derived. Secondly, in order to solve the problem of random noise caused by frequency doubling and square transformation in high-order MPSK signals, the method of Hilbert transform is proposed to reduce the noise. In addition, the classification characteristic parameters of modulation signal in spectral feature section and the recognition flow of modulation signal based on cyclic spectrum analysis are analyzed by mathematical derivation and experimental simulation, and the matrix extraction algorithm is analyzed. The image coefficient is introduced and the characteristic parameters suitable for low signal-to-noise ratio (SNR) are given. The simulation results show that the proposed algorithm can achieve better recognition performance under the condition of low signal-to-noise ratio (SNR). Finally, the effects of two main factors, the extraction coefficient product and the number of discrete Fourier transform (DFT), on the performance of the algorithm are analyzed. It is concluded by simulation that the extraction coefficient product should not be too large and the number of discrete Fourier transform points should not be too small in order to obtain a better recognition effect.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳龍飛;;基于高階循環(huán)累積量的QAM載波頻率估計(jì)[J];電子科技;2013年10期
2 劉明騫;李兵兵;曹超鳳;;非高斯噪聲下數(shù)字調(diào)制信號識別方法[J];電子與信息學(xué)報(bào);2013年01期
3 趙春暉;楊偉超;杜宇;;采用分?jǐn)?shù)低階循環(huán)譜相干系數(shù)的調(diào)制識別[J];應(yīng)用科學(xué)學(xué)報(bào);2011年06期
4 崔偉亮;江樺;李劍強(qiáng);吳楚;;改進(jìn)的循環(huán)譜估計(jì)快速算法與性能分析[J];電子與信息學(xué)報(bào);2011年07期
5 何為;高峰;李躍波;黃劉宏;劉鋒;;基于循環(huán)譜的MPSK信號識別[J];通信技術(shù);2010年10期
6 熊偉;曹蘭英;郝志梅;;基于多尺度相像系數(shù)的雷達(dá)干擾類型頻域識別[J];計(jì)算機(jī)仿真;2010年03期
7 孟玲玲;李靜;;基于循環(huán)譜相關(guān)方法的MFSK信號識別[J];無線電通信技術(shù);2010年01期
8 吳微露;丁亞飛;;通信對抗接收機(jī)建模與Simulink動態(tài)仿真[J];計(jì)算機(jī)工程;2010年02期
9 張達(dá)敏;王旭;;對基于決策論的數(shù)字信號調(diào)制識別方法的改進(jìn)[J];計(jì)算機(jī)應(yīng)用;2009年12期
10 劉鷺航;周云生;;基于循環(huán)譜的相位編碼信號調(diào)制參數(shù)估計(jì)[J];遙測遙控;2009年03期
相關(guān)碩士學(xué)位論文 前1條
1 陸磊磊;基于無線傳感網(wǎng)的電磁頻譜監(jiān)測軟件系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2012年
,本文編號:2308133
本文鏈接:http://sikaile.net/kejilunwen/wltx/2308133.html