天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

密集信號環(huán)境下的雷達(dá)信號分選算法研究

發(fā)布時間:2018-10-31 15:33
【摘要】:雷達(dá)信號分選是電子偵察系統(tǒng)中的一項(xiàng)關(guān)鍵技術(shù),不斷優(yōu)化信號分選方法有助于提高偵察系統(tǒng)的信號處理能力。目前,,用于信號分選的一些可測特征參數(shù)主要有脈沖到達(dá)時間(TOA)、到達(dá)角(AOA)、脈寬(PW)、載頻(RF)、脈幅(PA)等,傳統(tǒng)雷達(dá)信號分選方法是對TOA進(jìn)行處理,得到脈沖重復(fù)間隔(PRI),再根據(jù)該參數(shù)的特性進(jìn)行信號分選。為了提高信號處理的速度和分選正確率,常選用AOA、PW和RF作為預(yù)分選參數(shù),然后使用PRI進(jìn)行主分選。 本文重點(diǎn)研究密集信號環(huán)境下的雷達(dá)信號分選算法,包括對上述可用的雷達(dá)信號分選參數(shù)進(jìn)行簡要介紹,并描述如何進(jìn)行雷達(dá)信號環(huán)境的數(shù)字模擬。在仿真建模的基礎(chǔ)上,對幾種傳統(tǒng)的基于PRI的雷達(dá)信號分選方法進(jìn)行了對比分析。為適應(yīng)現(xiàn)代戰(zhàn)場環(huán)境的需求,許多學(xué)者在不斷地探索和研究實(shí)時高效的雷達(dá)信號分選方法,包括對傳統(tǒng)算法進(jìn)行不斷改進(jìn),使用多參數(shù)進(jìn)行信號分選,采用盲分離技術(shù)和脈沖特征提取等。在此,本文研究基于多參數(shù)的分選方法,因此,對幾種常見的多參數(shù)信號分選算法進(jìn)行了介紹。針對這些算法在進(jìn)行分選時是處于一種被動狀態(tài),即算法需要通過設(shè)定一系列的原則來判定數(shù)據(jù)對象是否屬于同一類,提出了基于集對分析聚類的雷達(dá)信號分選方法,集對分析方法是直接從數(shù)據(jù)對象間的相似性出發(fā)進(jìn)行研究的,具有計(jì)算速度快的優(yōu)點(diǎn)。針對原基于集對分析聚類的雷達(dá)信號分選方法的聚類結(jié)果具有不穩(wěn)定性,本文對該方法進(jìn)行了改進(jìn),并通過仿真實(shí)驗(yàn)進(jìn)行了驗(yàn)證,為了進(jìn)一步研究改進(jìn)算法的性能,對改進(jìn)算法在含不同噪聲比例的情況下進(jìn)行了仿真分析。 此外,在使用支持向量聚類算法進(jìn)行信號分選時,為了避免該算法的一些影響,提出了一種基于支持向量聚類改進(jìn)的雷達(dá)信號分選算法,該算法采用將支持向量聚類與上述改進(jìn)的集對分析方法相結(jié)合的方法,不僅有效避免了使用支持向量聚類算法所帶來的一些不利因素,同時也改善了改進(jìn)的集對分析方法的抗噪性能,通過實(shí)驗(yàn)對該算法進(jìn)行了驗(yàn)證。
[Abstract]:Radar signal sorting is a key technology in electronic reconnaissance system. Continuous optimization of signal sorting method is helpful to improve the signal processing ability of reconnaissance system. At present, some measurable characteristic parameters used in signal sorting are mainly pulse arrival time (TOA),) arrival angle (TOA), pulse width (AOA), (PW), carrier frequency (RF), pulse amplitude (PA), etc. The traditional method of radar signal sorting is to process TOA. The pulse repeat interval (PRI), is obtained and the signal is sorted according to the characteristic of the parameter. In order to improve the speed and accuracy of signal processing, AOA,PW and RF are often selected as presorting parameters, and then PRI is used for primary sorting. This paper focuses on the radar signal sorting algorithm under the dense signal environment, including a brief introduction of the available radar signal sorting parameters, and describes how to carry out the digital simulation of the radar signal environment. On the basis of simulation modeling, several traditional radar signal sorting methods based on PRI are compared and analyzed. In order to meet the needs of the modern battlefield environment, many scholars are constantly exploring and studying real-time and efficient radar signal sorting methods, including the continuous improvement of traditional algorithms and the use of multi-parameter signal sorting. Blind separation technique and pulse feature extraction were used. In this paper, the multi-parameter sorting method is studied, so several common multi-parameter signal sorting algorithms are introduced. Because these algorithms are in a passive state when sorting, that is, the algorithm needs to set a series of principles to determine whether the data object belongs to the same class, a method of radar signal sorting based on set pair analysis and clustering is proposed. The method of set pair analysis is studied directly from the similarity of data objects, which has the advantage of fast computing speed. In view of the instability of the clustering results of the original clustering method based on set pair clustering, this paper improves the method and verifies it through simulation experiments, in order to further study the performance of the improved algorithm. The improved algorithm is simulated and analyzed with different noise ratio. In addition, in order to avoid the influence of the support vector clustering algorithm, an improved radar signal sorting algorithm based on support vector clustering is proposed. This algorithm combines support vector clustering with the improved set pair analysis method, which not only effectively avoids some unfavorable factors brought by using support vector clustering algorithm. At the same time, the improved set pair analysis method is improved, and the algorithm is verified by experiments.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN957.51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊文華,高梅國;基于平面變換技術(shù)的脈沖信號分選[J];北京理工大學(xué)學(xué)報(bào);2005年02期

2 國強(qiáng);王常虹;郭立民;李崢;祝正威;華云;;分段聚類在雷達(dá)信號分選中的應(yīng)用[J];北京郵電大學(xué)學(xué)報(bào);2008年02期

3 李振興;盧景雙;張國毅;王威;;一種自動選擇參數(shù)的雷達(dá)輻射源SVC分選方法[J];電子信息對抗技術(shù);2011年02期

4 王曉峰;張國毅;王然;;一種新的未知雷達(dá)信號快速分選方法[J];電子信息對抗技術(shù);2011年05期

5 楊秋;王建濤;張榮;楊承志;;一種基于自適應(yīng)密度閾值的未知雷達(dá)信號分選算法[J];電子信息對抗技術(shù);2012年01期

6 王曉峰;張國毅;戴杰;;一種新的未知雷達(dá)信號聚類分選方法[J];電子信息對抗技術(shù);2012年01期

7 陳利虎;張爾揚(yáng);沈榮駿;;基于優(yōu)化初始聚類中心K-Means算法的跳頻信號分選[J];國防科技大學(xué)學(xué)報(bào);2009年02期

8 馮明月;何明浩;王冰切;張?jiān)l(fā);;基于改進(jìn)相似熵的參數(shù)交疊雷達(dá)信號分選[J];電子信息對抗技術(shù);2013年04期

9 向嫻;湯建龍;;一種基于網(wǎng)格密度聚類的雷達(dá)信號分選[J];火控雷達(dá)技術(shù);2010年04期

10 梁百川;神經(jīng)元網(wǎng)絡(luò)用于輻射源分選、識別[J];航天電子對抗;1994年02期



本文編號:2302713

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2302713.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶17fbf***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com