天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于ENF信號的數(shù)字音頻篡改盲檢測研究

發(fā)布時間:2018-10-31 12:31
【摘要】:數(shù)字多媒體設(shè)備的廣泛應(yīng)用使得數(shù)字音頻的錄制越來越方便,而各種音頻編輯軟件的出現(xiàn)也使得音頻篡改越來越容易。為了驗證數(shù)字音頻的原始性、完整性和真實性,尋求可靠的音頻篡改檢測方法變得更加迫切。基于電網(wǎng)頻率(ElectricNetwork Frequency, ENF)的數(shù)字音頻篡改檢測是近年來獲得較多關(guān)注的一種取證方法,但現(xiàn)有的基于ENF的方法存在一定的不足,比如在判斷篡改時需要ENF參考數(shù)據(jù)庫,篡改定位精度不高等。針對這些不足,本文研究無需ENF參考數(shù)據(jù)庫的音頻篡改盲檢測方法,主要工作和創(chuàng)新如下: (1)提出一種利用ENF信號的最大相關(guān)偏移(Maximum Offset for CrossCorrelation, MOCC)的音頻篡改檢測方法。將ENF信號劃分子塊并計算起始子塊與各子塊取得最大互相關(guān)值時的偏移量,即最大相關(guān)偏移,根據(jù)各子塊MOCC的一致性判斷音頻篡改,并實現(xiàn)篡改區(qū)域定位和篡改類型估計。針對不同的應(yīng)用場景,還分別提出視覺檢測法、自動檢測法以及快速檢測法。實驗表明,該方法能較準確地定位篡改,并根據(jù)定位的篡改區(qū)域內(nèi)容是靜音部分還是語音部分,判斷篡改類型是刪除還是插入。另外,由于該方法是在時域進行檢測,不需要轉(zhuǎn)換到變換域,因此其計算量比現(xiàn)有的基于ENF相位的方法要小。 (2)針對(1)中的方法在計算MOCC時受到噪聲干擾的問題,提出一種改進的MOCC的音頻篡改檢測方法。引入一個理想的正弦波作為參考信號,利用參考信號與ENF各子塊信號的多重互相關(guān)來增強ENF信號,并利用參考信號計算增強后的ENF各子塊信號的MOCC,根據(jù)MOCC的變化情況來定位篡改及判斷篡改類型。實驗表明該方法能有效提高ENF信號的信噪比,減小MOCC受到的干擾,并能改善低虛警率情況下的篡改檢測準確率。另外,在抵抗加性噪聲、音頻重采樣和音頻壓縮方面也有一定的魯棒性。 (3)提出一種基于最小平均幅度差偏移(Minimum Offset for AverageMagnitude Difference, MOAMD)的雙機制音頻篡改檢測方法,以提高篡改定位的精度。利用MOAMD來檢測音頻篡改,以簡化MOCC的計算;采用雙機制判斷準則,即聯(lián)合MOAMD的曲線變化情況和MOAMD曲線極值點的斜率變化情況,共同定位篡改區(qū)域。實驗表明,該方法能有效提高篡改定位的精度,而且雙機制中的機制二也能推廣應(yīng)用到其它方法。 (4)提出一種基于ENF鄰域相關(guān)系數(shù)的快速橫向濾波(Fast Transversal Filter,FTF)的音頻篡改檢測方法,以提高現(xiàn)有方法的檢測準確率。計算ENF鄰域子塊的相關(guān)系數(shù),并對相關(guān)系數(shù)進行FTF自適應(yīng)濾波,,根據(jù)濾波后的誤差能量的變化情況來判斷篡改,并實現(xiàn)篡改定位。實驗表明,該方法能夠有效提高篡改檢測的準確率,在ENF波動范圍較大和信噪比較低的情況下其優(yōu)勢更加明顯。
[Abstract]:The wide application of digital multimedia equipment makes the recording of digital audio more and more convenient, and the emergence of various audio editing software makes audio tampering easier and easier. In order to verify the originality, integrity and authenticity of digital audio, it is more urgent to seek reliable audio tampering detection methods. Digital audio tampering detection based on power network frequency (ElectricNetwork Frequency, ENF) is a kind of evidence gathering method which has been paid more attention in recent years. However, the existing methods based on ENF have some shortcomings, such as the need of ENF reference database in judging tampering. Tampering with positioning accuracy is not high. Aiming at these shortcomings, the blind detection method of audio tampering without ENF reference database is studied in this paper. The main work and innovation are as follows: (1) A maximum correlation offset (Maximum Offset for CrossCorrelation, using ENF signal is proposed. MOCC). The ENF signal is divided into sub-blocks and the offset of the initial sub-block and each sub-block is calculated when the maximum cross-correlation value is obtained. The audio tampering is judged according to the consistency of each sub-block MOCC, and the tamper region location and tamper type estimation are realized. For different application scenarios, visual detection, automatic detection and fast detection are also proposed. Experiments show that the method can locate tamper accurately and judge whether the tamper type is deleted or inserted according to whether the content of the tamper region is silent part or speech part. In addition, because the method is detected in the time domain and does not need to be converted to the transform domain, the computational complexity of the method is smaller than that of the existing methods based on ENF phase. (2) aiming at the problem that the method in (1) is disturbed by noise when calculating MOCC, an improved MOCC audio tamper detection method is proposed. An ideal sine wave is introduced as the reference signal to enhance the ENF signal by using the multiple cross-correlation between the reference signal and the ENF sub-block signal, and the MOCC, of the enhanced ENF sub-block signal is calculated by using the reference signal. According to the change of MOCC, the tamper is located and the type of tamper is judged. Experiments show that this method can effectively improve the signal-to-noise ratio of ENF signal, reduce the interference of MOCC, and improve the accuracy of tampering detection under low false alarm rate. In addition, there are some robustness in resisting additive noise, audio resampling and audio compression. (3) A dual-mechanism audio tamper detection method based on minimum average amplitude offset (Minimum Offset for AverageMagnitude Difference, MOAMD) is proposed to improve the accuracy of tamper location. The audio tamper is detected by MOAMD to simplify the calculation of MOCC, and the tamper region is located by combining the curve variation of MOAMD and the slope of extreme point of MOAMD curve. Experiments show that this method can effectively improve the accuracy of tampering localization, and the two-mechanism can be extended to other methods. (4) an audio tamper detection method based on fast transversal filtering (Fast Transversal Filter,FTF (ENF neighborhood correlation coefficient) is proposed to improve the accuracy of existing methods. The correlation coefficient of the neighborhood block of ENF is calculated, and the correlation coefficient is filtered by FTF adaptive filter. The tampering is judged according to the change of error energy after filtering, and the tamper location is realized. Experiments show that this method can effectively improve the accuracy of tamper detection, and its advantages are more obvious in the case of large fluctuation range of ENF and low signal-to-noise ratio (SNR).
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN919.8

【相似文獻】

相關(guān)期刊論文 前10條

1 劉蓉;霍甲;;信號盲檢測應(yīng)用情況簡述[J];數(shù)字通信世界;2014年06期

2 張昀;于舒娟;王京;;基于自調(diào)節(jié)粒子群算法的盲檢測[J];計算機技術(shù)與發(fā)展;2013年11期

3 王偉;方勇;;基于有限差分的置換圖像盲檢測方法[J];電子學(xué)報;2010年10期

4 劉潘梅;孫容海;吳建源;;一種新的區(qū)域復(fù)制圖像篡改盲檢測技術(shù)[J];計算機工程與應(yīng)用;2012年09期

5 詹雙環(huán);張鴻賓;;基于小波分解和方差分析的圖像信息隱藏盲檢測[J];電子與信息學(xué)報;2007年06期

6 韓鵬;楊曉元;唐玉華;;基于一類支持向量機的隱秘圖像盲檢測算法[J];計算機工程與應(yīng)用;2006年35期

7 平玲娣;劉祖根;史烈;孫康;;基于易變特征實現(xiàn)隱藏信息的盲檢測[J];浙江大學(xué)學(xué)報(工學(xué)版);2007年03期

8 劉燕;劉朝陽;王安義;;一種快速傳輸格式盲檢測的方法[J];數(shù)字通信;2011年03期

9 劉萬賢;彭華;;一種突發(fā)直擴信號盲檢測算法[J];信息工程大學(xué)學(xué)報;2013年06期

10 劉杰;張立民;王建雄;;直擴信號盲檢測方法研究[J];艦船電子工程;2014年07期

相關(guān)會議論文 前2條

1 阮秀凱;張志涌;;Hopfield神經(jīng)網(wǎng)盲檢測統(tǒng)計信息缺失信號[A];2011年中國智能自動化學(xué)術(shù)會議論文集(第一分冊)[C];2011年

2 羅向陽;王道順;汪萍;劉粉林;;基于圖像多域特征縮放與BP網(wǎng)絡(luò)的信息隱藏盲檢測[A];第七屆全國信息隱藏暨多媒體信息安全學(xué)術(shù)大會論文集[C];2007年

相關(guān)博士學(xué)位論文 前3條

1 胡玲娜;靜止圖像數(shù)字水印的盲檢測算法研究[D];上海交通大學(xué);2010年

2 呂志勝;基于ENF信號的數(shù)字音頻篡改盲檢測研究[D];華南理工大學(xué);2014年

3 羅向陽;數(shù)字圖像隱寫檢測關(guān)鍵問題研究[D];解放軍信息工程大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 夏yN;基于量子免疫優(yōu)化的盲檢測算法[D];南京郵電大學(xué);2014年

2 張蓉;含公零點信道的信號盲檢測[D];南京郵電大學(xué);2012年

3 遲旭斌;直接序列擴頻信號的盲檢測和參數(shù)估計方法[D];西安電子科技大學(xué);2014年

4 范樂園;半可逆FIR-MIMO系統(tǒng)多值信號盲檢測[D];南京郵電大學(xué);2014年

5 韓飛;正交空時分組碼的最大似然盲檢測算法研究[D];西南交通大學(xué);2014年

6 許樂;基于FPGA的下行PDCCH盲檢測的實現(xiàn)[D];西安電子科技大學(xué);2012年

7 錢建平;復(fù)值多態(tài)連續(xù)Hopfield網(wǎng)盲檢測MPSK信號[D];南京郵電大學(xué);2012年

8 楊陽;基于模式識別的JPEG圖像通用盲檢測方法研究[D];合肥工業(yè)大學(xué);2012年

9 管超;基于SVM的圖像隱寫盲檢測[D];江南大學(xué);2008年

10 劉飛;DS/CDMA信號盲檢測與分離技術(shù)研究[D];電子科技大學(xué);2006年



本文編號:2302191

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2302191.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶90433***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com