基于ENF信號的數(shù)字音頻篡改盲檢測研究
[Abstract]:The wide application of digital multimedia equipment makes the recording of digital audio more and more convenient, and the emergence of various audio editing software makes audio tampering easier and easier. In order to verify the originality, integrity and authenticity of digital audio, it is more urgent to seek reliable audio tampering detection methods. Digital audio tampering detection based on power network frequency (ElectricNetwork Frequency, ENF) is a kind of evidence gathering method which has been paid more attention in recent years. However, the existing methods based on ENF have some shortcomings, such as the need of ENF reference database in judging tampering. Tampering with positioning accuracy is not high. Aiming at these shortcomings, the blind detection method of audio tampering without ENF reference database is studied in this paper. The main work and innovation are as follows: (1) A maximum correlation offset (Maximum Offset for CrossCorrelation, using ENF signal is proposed. MOCC). The ENF signal is divided into sub-blocks and the offset of the initial sub-block and each sub-block is calculated when the maximum cross-correlation value is obtained. The audio tampering is judged according to the consistency of each sub-block MOCC, and the tamper region location and tamper type estimation are realized. For different application scenarios, visual detection, automatic detection and fast detection are also proposed. Experiments show that the method can locate tamper accurately and judge whether the tamper type is deleted or inserted according to whether the content of the tamper region is silent part or speech part. In addition, because the method is detected in the time domain and does not need to be converted to the transform domain, the computational complexity of the method is smaller than that of the existing methods based on ENF phase. (2) aiming at the problem that the method in (1) is disturbed by noise when calculating MOCC, an improved MOCC audio tamper detection method is proposed. An ideal sine wave is introduced as the reference signal to enhance the ENF signal by using the multiple cross-correlation between the reference signal and the ENF sub-block signal, and the MOCC, of the enhanced ENF sub-block signal is calculated by using the reference signal. According to the change of MOCC, the tamper is located and the type of tamper is judged. Experiments show that this method can effectively improve the signal-to-noise ratio of ENF signal, reduce the interference of MOCC, and improve the accuracy of tampering detection under low false alarm rate. In addition, there are some robustness in resisting additive noise, audio resampling and audio compression. (3) A dual-mechanism audio tamper detection method based on minimum average amplitude offset (Minimum Offset for AverageMagnitude Difference, MOAMD) is proposed to improve the accuracy of tamper location. The audio tamper is detected by MOAMD to simplify the calculation of MOCC, and the tamper region is located by combining the curve variation of MOAMD and the slope of extreme point of MOAMD curve. Experiments show that this method can effectively improve the accuracy of tampering localization, and the two-mechanism can be extended to other methods. (4) an audio tamper detection method based on fast transversal filtering (Fast Transversal Filter,FTF (ENF neighborhood correlation coefficient) is proposed to improve the accuracy of existing methods. The correlation coefficient of the neighborhood block of ENF is calculated, and the correlation coefficient is filtered by FTF adaptive filter. The tampering is judged according to the change of error energy after filtering, and the tamper location is realized. Experiments show that this method can effectively improve the accuracy of tamper detection, and its advantages are more obvious in the case of large fluctuation range of ENF and low signal-to-noise ratio (SNR).
【學(xué)位授予單位】:華南理工大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN919.8
【相似文獻】
相關(guān)期刊論文 前10條
1 劉蓉;霍甲;;信號盲檢測應(yīng)用情況簡述[J];數(shù)字通信世界;2014年06期
2 張昀;于舒娟;王京;;基于自調(diào)節(jié)粒子群算法的盲檢測[J];計算機技術(shù)與發(fā)展;2013年11期
3 王偉;方勇;;基于有限差分的置換圖像盲檢測方法[J];電子學(xué)報;2010年10期
4 劉潘梅;孫容海;吳建源;;一種新的區(qū)域復(fù)制圖像篡改盲檢測技術(shù)[J];計算機工程與應(yīng)用;2012年09期
5 詹雙環(huán);張鴻賓;;基于小波分解和方差分析的圖像信息隱藏盲檢測[J];電子與信息學(xué)報;2007年06期
6 韓鵬;楊曉元;唐玉華;;基于一類支持向量機的隱秘圖像盲檢測算法[J];計算機工程與應(yīng)用;2006年35期
7 平玲娣;劉祖根;史烈;孫康;;基于易變特征實現(xiàn)隱藏信息的盲檢測[J];浙江大學(xué)學(xué)報(工學(xué)版);2007年03期
8 劉燕;劉朝陽;王安義;;一種快速傳輸格式盲檢測的方法[J];數(shù)字通信;2011年03期
9 劉萬賢;彭華;;一種突發(fā)直擴信號盲檢測算法[J];信息工程大學(xué)學(xué)報;2013年06期
10 劉杰;張立民;王建雄;;直擴信號盲檢測方法研究[J];艦船電子工程;2014年07期
相關(guān)會議論文 前2條
1 阮秀凱;張志涌;;Hopfield神經(jīng)網(wǎng)盲檢測統(tǒng)計信息缺失信號[A];2011年中國智能自動化學(xué)術(shù)會議論文集(第一分冊)[C];2011年
2 羅向陽;王道順;汪萍;劉粉林;;基于圖像多域特征縮放與BP網(wǎng)絡(luò)的信息隱藏盲檢測[A];第七屆全國信息隱藏暨多媒體信息安全學(xué)術(shù)大會論文集[C];2007年
相關(guān)博士學(xué)位論文 前3條
1 胡玲娜;靜止圖像數(shù)字水印的盲檢測算法研究[D];上海交通大學(xué);2010年
2 呂志勝;基于ENF信號的數(shù)字音頻篡改盲檢測研究[D];華南理工大學(xué);2014年
3 羅向陽;數(shù)字圖像隱寫檢測關(guān)鍵問題研究[D];解放軍信息工程大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 夏yN;基于量子免疫優(yōu)化的盲檢測算法[D];南京郵電大學(xué);2014年
2 張蓉;含公零點信道的信號盲檢測[D];南京郵電大學(xué);2012年
3 遲旭斌;直接序列擴頻信號的盲檢測和參數(shù)估計方法[D];西安電子科技大學(xué);2014年
4 范樂園;半可逆FIR-MIMO系統(tǒng)多值信號盲檢測[D];南京郵電大學(xué);2014年
5 韓飛;正交空時分組碼的最大似然盲檢測算法研究[D];西南交通大學(xué);2014年
6 許樂;基于FPGA的下行PDCCH盲檢測的實現(xiàn)[D];西安電子科技大學(xué);2012年
7 錢建平;復(fù)值多態(tài)連續(xù)Hopfield網(wǎng)盲檢測MPSK信號[D];南京郵電大學(xué);2012年
8 楊陽;基于模式識別的JPEG圖像通用盲檢測方法研究[D];合肥工業(yè)大學(xué);2012年
9 管超;基于SVM的圖像隱寫盲檢測[D];江南大學(xué);2008年
10 劉飛;DS/CDMA信號盲檢測與分離技術(shù)研究[D];電子科技大學(xué);2006年
本文編號:2302191
本文鏈接:http://sikaile.net/kejilunwen/wltx/2302191.html