非監(jiān)督的SAR圖像海陸分割與溢油提取方法研究
[Abstract]:Abstract: Marine oil spill pollution not only affects the development of human economy, but also affects the marine ecological environment, and poses a great threat to marine animals and plants and the lives of coastal people. Timely and accurate monitoring of oil spill on the sea level is of great significance to the protection of marine ecological environment and the development of human economy. Aiming at this problem, based on the establishment of a real-time, unsupervised ocean monitoring system, this paper selects the low cost, all-weather, all-weather SAR images to monitor the oil spill information on the sea surface. Through the research of unsupervised sea and land segmentation and dark area (oil spill), a fast and accurate method is found, and the feasibility is verified by corresponding experiments. At the same time, an integrated SAR image oil spill detection framework system is developed. This paper mainly discusses the following contents: 1. This paper briefly introduces the basic principle and image characteristics of SAR, introduces the research background and significance of dark area (oil spill) in SAR image, analyzes the common methods and shortcomings at home and abroad, and introduces the research ideas of this paper. 2. Firstly, the common methods and principles of land and sea are introduced. At the same time, the level set method based on C-V model is discussed in order to realize the unsupervised land and sea segmentation, and the improved scheme is given to realize the application of high-resolution SAR data. At the same time, the experimental results are compared with the original model, and the feasibility of the scheme is proved. 3. This paper expounds the principle and condition of oil spill imaging, introduces the characteristics of oil film in SAR image, and further discusses the automatic segmentation method of sea surface dark area (oil spill), and transforms the simple segmentation problem into classification problem by using windowed classification. At the same time, a fast CFAR algorithm is used to extract the dark areas in each class, and the feasibility of the method is proved by detailed experiments. Finally, an integrated oil spill detection framework based on SAR image is introduced. 4. The advantages and disadvantages of current oil spill detection methods and the future research directions are summarized.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃曉霞,朱振海;海洋表面油膜的合成孔徑雷達(dá)圖像檢測(cè)[J];地質(zhì)科技情報(bào);1997年S1期
2 姜慧研;馮銳杰;;基于改進(jìn)的變分水平集和區(qū)域生長的圖像分割方法的研究[J];電子學(xué)報(bào);2012年08期
3 徐青;鄭汲;程永存;紀(jì)棋嚴(yán);;應(yīng)用紋理分析識(shí)別SAR海上溢油圖像[J];河海大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年05期
4 徐玲凌;肖進(jìn)勝;易本順;婁利軍;;改進(jìn)的C-V水平集模型圖像分割算法[J];計(jì)算機(jī)工程;2009年10期
5 官晟,吳東,張博,劉智深;海洋激光熒光雷達(dá)海面油膜種類鑒別研究[J];青島海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年02期
6 石立堅(jiān);趙朝方;劉朋;;基于紋理分析和人工神經(jīng)網(wǎng)絡(luò)的SAR圖像中海面溢油識(shí)別方法[J];中國海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年06期
7 李建明;海洋石油污染的危害與凈化[J];生物學(xué)教學(xué);2002年07期
8 劉書君;冉強(qiáng)軍;袁運(yùn)能;毛士藝;;基于單通道合成孔徑雷達(dá)子圖像的動(dòng)目標(biāo)檢測(cè)性能分析[J];系統(tǒng)工程與電子技術(shù);2010年12期
9 趙冬至,叢丕福;海面溢油的可見光波段地物光譜特征研究[J];遙感技術(shù)與應(yīng)用;2000年03期
10 原君娜;邵蕓;田維;王世昂;;利用SAR圖像識(shí)別海面油膜的方法介紹[J];遙感技術(shù)與應(yīng)用;2010年01期
,本文編號(hào):2297286
本文鏈接:http://sikaile.net/kejilunwen/wltx/2297286.html