基于雜散特征的輻射源個體識別研究
[Abstract]:As a key technology in communication countermeasure field, the research on individual identification of emitter has attracted wide attention at home and abroad in recent years. With the increasing complexity of communication emitter equipment, how to intercept and analyze the individual characteristic information of emitter reflected in communication signal and classify it effectively has become a hot topic in individual identification. Among the existing research results in China, the identification of individual characteristics of emitter is mainly focused on different types of equipment, and the classification of features depends on the number of sufficient samples, while the research results abroad focus on transient signals. On the basis of summing up the relevant research at home and abroad, this paper takes the stray characteristics of the same radiation sources as the research object, and studies the extraction method and classification recognition of the stray characteristics of the same radiation sources. In the aspect of feature extraction, the marginal spectrum stray feature of steady state signal of emitter is extracted in this paper. Based on empirical mode decomposition (EMD) and wavelet packet reconstruction, the energy center of gravity and information entropy of marginal spectrum are obtained. However, in the original feature extraction method, the EMD method has the problem of modal aliasing, and the wavelet packet reconstruction criteria need to be selected by experience. In order to solve the above problems, an improved scheme is proposed. Firstly, the causes of modal aliasing in EMD are analyzed, and the standard of wavelet packet reconstruction and the input of EMD are improved. The method of superposition time spectrum is used to calculate the marginal spectrum of the signal. The influence of modal aliasing is reduced, the aggregation of stray feature distribution is improved, and the problem of serious doping degree is improved, and the degree of feature separation is improved to a certain extent. In the aspect of classification and recognition, two groups of classification experiments with different number of samples are carried out. Using K-nearest neighbor algorithm, neural network classifier and (SVM) classifier of support vector machine, the classification performance of communication signals with different modulation patterns is compared. The SVM classifier with the best performance is selected to compare the classification effect before and after the feature extraction method. The simulation results show that the improved feature extraction method can improve the classification performance of the emitter signal to a certain extent. It is suitable for different modulation types.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN975
【相似文獻】
相關期刊論文 前10條
1 王華,李介谷;人臉斜視圖象的特征提取與恢復[J];上海交通大學學報;1997年01期
2 黃麗莉;皋軍;;基于局部加權的非線性特征提取方法[J];華中科技大學學報(自然科學版);2013年S1期
3 徐f ,邱道尹,沈憲章;糧倉害蟲的特征提取與分類的研究[J];鄭州工業(yè)大學學報;2000年04期
4 張焱;張志龍;沈振康;;一種融入運動特性的顯著性特征提取方法[J];國防科技大學學報;2008年03期
5 張輝;林建華;;網上交易歷史記錄的特征提取[J];企業(yè)科技與發(fā)展;2008年18期
6 劉美春;趙敏;謝勝利;;基于鄰域空間模式的運動相關電位特征提取方法[J];華南理工大學學報(自然科學版);2009年10期
7 王天楊;程衛(wèi)東;李建勇;;基于3種測度值的特征提取方法優(yōu)化評價[J];儀器儀表學報;2010年04期
8 李霆,吉小軍,李世中,彭長清,宋壽鵬;回歸譜特征提取與識別效果分析[J];探測與控制學報;1999年04期
9 王智文,謝國慶;圖像中點、線、面特征提取[J];廣西工學院學報;2005年03期
10 朱永嬌;;漢字特征提取的量化研究[J];科學技術與工程;2007年10期
相關會議論文 前10條
1 尚修剛;蔣慰孫;;模糊特征提取新算法[A];1997中國控制與決策學術年會論文集[C];1997年
2 潘榮江;孟祥旭;楊承磊;王銳;;旋轉體的幾何特征提取方法[A];第一屆建立和諧人機環(huán)境聯合學術會議(HHME2005)論文集[C];2005年
3 薛燕;李建良;朱學芳;;人臉識別中特征提取的一種改進方法[A];第十三屆全國圖象圖形學學術會議論文集[C];2006年
4 杜栓平;曹正良;;時間—頻率域特征提取及其應用[A];2005年全國水聲學學術會議論文集[C];2005年
5 黃先鋒;韓傳久;陳旭;周劍軍;;運動目標的分割與特征提取[A];全國第二屆信號處理與應用學術會議?痆C];2008年
6 魏明果;;方言比較的特征提取與矩陣分析[A];2009系統(tǒng)仿真技術及其應用學術會議論文集[C];2009年
7 林土勝;賴聲禮;;視網膜血管特征提取的拆支跟蹤法[A];1999年中國神經網絡與信號處理學術會議論文集[C];1999年
8 秦建玲;李軍;;基于核的主成分分析的特征提取方法與樣本篩選[A];2005年中國機械工程學會年會論文集[C];2005年
9 劉紅;陳光,
本文編號:2294649
本文鏈接:http://sikaile.net/kejilunwen/wltx/2294649.html