基于稀疏貝葉斯學習的DOA估計算法
[Abstract]:Direction-of-arrival (DOA) estimation plays an important role in many practical applications, so it is always a concerned field. The traditional DOA estimation algorithm needs a large number of sampled data to estimate accurately under the condition of high signal-to-noise ratio (SNR). Moreover, the effect of processing coherent signal is not ideal, so it is limited in some new applications. Therefore, how to use a small amount of measurement data to achieve high resolution DOA estimation algorithm has become a new research direction. The continuous development of sparse representation theory provides a new direction for DOA estimation. It points out that for sparse or compressible signals, when certain conditions are satisfied, The original signal can be accurately recovered from the sampling data that is far less than that required by the Nyquist sampling theorem. There are three main sparse reconstruction algorithms: greedy algorithm, convex relaxation algorithm and Bayesian learning algorithm. Bayesian learning / inference integrates the prior cognition of decision makers, the distribution of unknown parameters in sample information, and achieves the purpose of sparse reconstruction from the angle of statistical optimization. It is easy to understand and shows many advantages. It has become a research hotspot. This paper focuses on the DOA estimation algorithm based on sparse Bayesian learning. The main work and results are listed as follows: 1. The basic principle of three kinds of sparse reconstruction algorithms is introduced in detail, and their advantages and disadvantages are analyzed. The classical DOA estimation algorithm based on sparse representation is briefly introduced, including L1-SVD algorithm, L1-SRACV algorithm and dimensionally reduced L1-SRACV algorithm. 2. The Bayesian estimation theory and the framework of Bayesian learning algorithm are expounded. The advantages of Bayesian learning algorithm are analyzed. Finally, a DOA estimation algorithm based on sparse Bayesian learning (MSBL) is proposed. The simulation results show that the proposed algorithm has good estimation performance in the case of low shot and can be applied to coherent signal processing. The signal model of distributed source DOA estimation and block sparse Bayesian learning (BSBL) algorithm are studied. BSBL is applied to the DOA estimation of distributed signal source. The performance of the algorithm is analyzed by simulation test.
【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TN911.7
【相似文獻】
相關期刊論文 前10條
1 王娟;柴玉梅;;基于多議題協(xié)商的貝葉斯學習[J];計算機技術與發(fā)展;2006年02期
2 馮楠;李敏強;寇紀淞;方德英;;基于貝葉斯網絡的軟件項目風險分析過程[J];計算機工程與應用;2006年18期
3 陳飛;王本年;高陽;陳兆乾;陳世福;;貝葉斯學習與強化學習結合技術的研究[J];計算機科學;2006年02期
4 胡振宇;林士敏;;貝葉斯學習中的線性聯(lián)合先驗[J];計算機工程與應用;2012年01期
5 王軍,周偉達;貝葉斯網絡的研究與進展[J];電子科技;1999年15期
6 胡振宇,林士敏,陸玉昌;相容的貝葉斯學習及其后驗分布的漸近正態(tài)性[J];廣西師范大學學報(自然科學版);2004年01期
7 柴玉梅;王娟;;基于學習的多議題協(xié)商[J];微計算機信息;2006年18期
8 王娟;王璞;;貝葉斯網絡的在線學習[J];黑龍江科技信息;2008年35期
9 王娟;王璞;;基于不妥協(xié)度的Bayes學習協(xié)商機制[J];電腦知識與技術;2008年27期
10 李晶晶;;論貝葉斯學習機的學習過程[J];甘肅聯(lián)合大學學報(自然科學版);2009年04期
相關會議論文 前2條
1 路子峗;張旭東;高雋;;基于稀疏貝葉斯學習的相關向量跟蹤[A];第七屆青年學術會議論文集[C];2005年
2 黃桂松;;一種基于貝葉斯網絡的業(yè)務驅動認知網絡實現(xiàn)方法[A];江蘇省電子學會2010年學術年會論文集[C];2010年
相關博士學位論文 前1條
1 宮秀軍;貝葉斯學習理論及其應用研究[D];中國科學院研究生院(計算技術研究所);2002年
相關碩士學位論文 前10條
1 張銀平;基于稀疏貝葉斯學習的DOA估計算法[D];西安電子科技大學;2014年
2 王晶;稀疏貝葉斯學習理論及應用研究[D];西安電子科技大學;2012年
3 辛國福;貝葉斯網絡中的因果推斷[D];西安電子科技大學;2011年
4 李亮;基于動態(tài)貝葉斯網絡方法的戰(zhàn)場態(tài)勢重構技術研究[D];南昌航空大學;2013年
5 胡振宇;貝葉斯學習的先驗分布的研究[D];廣西師范大學;2001年
6 王發(fā)智;基于貝葉斯網絡的交通突發(fā)事件態(tài)勢評估技術[D];大連理工大學;2006年
7 申曉科;機器人線路巡檢下的動態(tài)貝葉斯網絡輸電線路故障診斷[D];華北電力大學;2014年
8 韓志朋;基于大規(guī)模貝葉斯網絡的醫(yī)療質量數(shù)據(jù)挖掘研究[D];天津大學;2012年
9 劉吉振;貝葉斯學習及其在個性化搜索和推薦應用研究[D];中國海洋大學;2013年
10 楊慶平;基于貝葉斯網絡的基因調控網絡構建算法的研究[D];哈爾濱工業(yè)大學;2006年
,本文編號:2274420
本文鏈接:http://sikaile.net/kejilunwen/wltx/2274420.html