采用Prony與粒子群算法的電力暫態(tài)信號分析
發(fā)布時間:2018-10-15 13:32
【摘要】:為了提高對含有諧波/間諧波、衰減直流分量和噪聲的電力故障暫態(tài)信號的分析精度,提出了基于改進(jìn)Prony算法與粒子群優(yōu)化算法相結(jié)合的電力故障暫態(tài)信號分析方法。該文先采用多小波方法對信號進(jìn)行消噪處理,再利用差分算法濾除衰減直流分量并對高頻信號進(jìn)行放大,以提高Prony算法的分析精度;然后利用改進(jìn)Prony算法估計出信號中含有的頻率個數(shù)和相關(guān)參量的粗略估計值,以此為基礎(chǔ)建立電力參數(shù)模型,以得到的相關(guān)參量的粗略估計值作為算法的初始種群值,并估計出各參量的范圍,最后采用粒子群優(yōu)化算法對模型進(jìn)行求解。仿真結(jié)果表明,所提方法能對所研究的電力故障暫態(tài)信號進(jìn)行精確分析。
[Abstract]:In order to improve the accuracy of power fault transient signal analysis with harmonic / interharmonic, attenuated DC component and noise, a power fault transient signal analysis method based on improved Prony algorithm and particle swarm optimization (PSO) algorithm is proposed. In this paper, the signal is de-noised by multi-wavelet method, then the attenuation DC component is filtered by differential algorithm and the high-frequency signal is amplified to improve the analysis accuracy of Prony algorithm. Then the improved Prony algorithm is used to estimate the number of frequencies contained in the signal and the rough estimation of the related parameters. Based on this, a power parameter model is established, and the rough estimation of the related parameters is taken as the initial population value of the algorithm. Finally, particle swarm optimization algorithm is used to solve the model. The simulation results show that the proposed method can accurately analyze the transient signals of power failure.
【作者單位】: 海軍工程大學(xué)電氣工程學(xué)院;
【基金】:國家自然科學(xué)基金項目(51177168) 海軍工程大學(xué)博士研究生創(chuàng)新基金項目
【分類號】:TN911.6;TM711
[Abstract]:In order to improve the accuracy of power fault transient signal analysis with harmonic / interharmonic, attenuated DC component and noise, a power fault transient signal analysis method based on improved Prony algorithm and particle swarm optimization (PSO) algorithm is proposed. In this paper, the signal is de-noised by multi-wavelet method, then the attenuation DC component is filtered by differential algorithm and the high-frequency signal is amplified to improve the analysis accuracy of Prony algorithm. Then the improved Prony algorithm is used to estimate the number of frequencies contained in the signal and the rough estimation of the related parameters. Based on this, a power parameter model is established, and the rough estimation of the related parameters is taken as the initial population value of the algorithm. Finally, particle swarm optimization algorithm is used to solve the model. The simulation results show that the proposed method can accurately analyze the transient signals of power failure.
【作者單位】: 海軍工程大學(xué)電氣工程學(xué)院;
【基金】:國家自然科學(xué)基金項目(51177168) 海軍工程大學(xué)博士研究生創(chuàng)新基金項目
【分類號】:TN911.6;TM711
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王家林;夏立;吳正國;楊宣訪;;電力系統(tǒng)微機保護(hù)故障信息檢測算法綜述[J];電測與儀表;2011年02期
2 丁屹峰,程浩忠,呂干云,占勇,孫毅斌,陸融;基于Prony算法的諧波和間諧波頻譜估計[J];電工技術(shù)學(xué)報;2005年10期
3 石一輝;張承學(xué);易攀;張彥昌;;差分算法在電力系統(tǒng)高頻信號分析過程中的研究[J];電工技術(shù)學(xué)報;2008年03期
4 呂干云;方奇品;蔡秀珊;;一種基于粒子群優(yōu)化算法的間諧波分析方法[J];電工技術(shù)學(xué)報;2009年12期
5 胡家聲,郭創(chuàng)新,曹一家;基于擴展粒子群優(yōu)化算法的同步發(fā)電機參數(shù)辨識[J];電力系統(tǒng)自動化;2004年06期
6 胡德峰;張步涵;姚建光;;基于改進(jìn)粒子群算法的多目標(biāo)最優(yōu)潮流計算[J];電力系統(tǒng)及其自動化學(xué)報;2007年03期
7 趙勇;王學(xué)偉;;小波Mallat諧波測量的帶內(nèi)泄漏誤差分析與算法改進(jìn)[J];電力自動化設(shè)備;2009年08期
8 竺煒;唐穎杰;周有慶;曾U喺,
本文編號:2272704
本文鏈接:http://sikaile.net/kejilunwen/wltx/2272704.html
最近更新
教材專著