基于核函數(shù)的語音情感識別技術(shù)的研究
[Abstract]:As an important branch of emotion calculation, emotion recognition has attracted the attention of researchers at home and abroad in recent years. As one of the important ways of human communication, speech carries a large amount of emotional information. The speech emotion recognition technology enables the computer to recognize the emotional state of the speaker through the voice signal, realize more harmonious human-computer interaction, and has a very wide application prospect in real life. This paper mainly studies the recognition of speech emotion based on kernel function, introduces kernel method into the traditional pattern recognition algorithm, further improves the non-linear processing ability of the algorithm, and puts forward some improvement to the speech emotion recognition according to the corresponding algorithm. The main research contents and innovation points of this thesis are as follows: (1) the research background and significance of speech emotion recognition are expounded, and the domestic and foreign research status of emotion description model, emotion database, emotion characteristic parameter, feature health-reduction and emotion classification algorithm are summarized. (2) Design and record the Chinese voice emotion database, which contains five basic emotions such as happiness, anger, sadness, fear, calm and so on, and all the speech samples pass the validity check to ensure that the data conforms to the specification. The speech signal in the database is pre-processed, and the speech speed, energy and amplitude, fundamental frequency, resonance peak, MFCC and other parameters are extracted to form the emotion characteristic vector and the change rule of parameters in different emotional states is analyzed, and the basic work is done for the subsequent voice emotional experiment. (3) a method for combining core C mean clustering and nuclear K nearest neighbor classification is proposed for speech emotion recognition. The algorithm uses kernel mapping to map the original input space to the high-dimensional feature empty question, and performs C-means clustering in the feature space to construct a representative emotion template. and then classifying the test samples by using a K-nearest algorithm. The algorithm not only improves the nonlinear processing capability of the classifier by using the core method, but also overcomes the defect that the distance between the test sample and all the training samples needs to be calculated in the traditional nuclear K nearest neighbor classification, and the classification speed is improved. In order to further improve the accuracy of the calculation, this paper also introduces the theory of fuzzy sets into the algorithm. By constructing fuzzy polytypes to get better emotion clustering sets and constructing membership functions in the neighborhood classification, the test samples are subordinate to each emotion category in different degrees. and a more realistic classification result is obtained. The final experiment shows that the algorithm has more effective recognition efficiency. (4) applying the kernel sparse representation classification algorithm in speech emotion recognition, using the kernel mapping mechanism to extend the traditional sparse representation classifier to the kernel sparse representation classifier, overcoming the defect that the sparse representation classifier can not effectively solve the non-linear problem, the test samples are more accurately represented as a sparse linear combination of the training samples. At last, using the idea of local coding to improve the algorithm, a weighted kernel sparse representation classification algorithm based on local constraints is proposed. Compared with the kernel sparse representation classification algorithm, the algorithm can make the test samples sparse representation with more neighbor training samples. the accuracy of the classification can be improved to a certain extent. (5) The kernel functions in the support vector machine are deeply researched and improved. In order to highlight the difference of different features on the classification, the information of the feature importance degree is integrated into the polynomial kernel function and the Gaussian kernel function. Then using the improved polynomial kernel function and the Gaussian kernel function to form the combined kernel function, finally finding the optimal kernel parameters by the optimization algorithm to obtain the optimal combination kernel function. The algorithm not only improves the kernel kernel function, but also replaces the single kernel function by using the combination kernel function, and finds the optimal kernel parameter and the combined parameter through the optimization algorithm, and can say that the traditional support vector machine has multiple improvements to improve the performance of the algorithm.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN912.34
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙力;黃程韋;;實用語音情感識別中的若干關(guān)鍵技術(shù)[J];數(shù)據(jù)采集與處理;2014年02期
2 陳建廈,李翠華;語音情感識別的研究進展[J];計算機工程;2005年13期
3 王茜;;一個語音情感識別系統(tǒng)的設(shè)計與實現(xiàn)[J];大眾科技;2006年08期
4 孫亞;;遠(yuǎn)程教學(xué)中語音情感識別系統(tǒng)的研究與實現(xiàn)[J];長春理工大學(xué)學(xué)報(高教版);2008年02期
5 章國寶;宋清華;費樹岷;趙艷;;語音情感識別研究[J];計算機技術(shù)與發(fā)展;2009年01期
6 石瑛;胡學(xué)鋼;方磊;;基于決策樹的多特征語音情感識別[J];計算機技術(shù)與發(fā)展;2009年01期
7 趙臘生;張強;魏小鵬;;語音情感識別研究進展[J];計算機應(yīng)用研究;2009年02期
8 張石清;趙知勁;;噪聲背景下的語音情感識別[J];西南交通大學(xué)學(xué)報;2009年03期
9 黃程韋;金峗;王青云;趙艷;趙力;;基于特征空間分解與融合的語音情感識別[J];信號處理;2010年06期
10 袁健;賀祥;許華虎;馮肖維;劉玲;;服務(wù)機器人的語音情感識別與交互技術(shù)研究[J];小型微型計算機系統(tǒng);2010年07期
相關(guān)會議論文 前8條
1 陳建廈;;語音情感識別綜述[A];第一屆中國情感計算及智能交互學(xué)術(shù)會議論文集[C];2003年
2 楊桃香;楊鑒;畢福昆;;基于模糊聚類的語音情感識別[A];第三屆和諧人機環(huán)境聯(lián)合學(xué)術(shù)會議(HHME2007)論文集[C];2007年
3 羅武駿;包永強;趙力;;基于模糊支持向量機的語音情感識別方法[A];2012'中國西部聲學(xué)學(xué)術(shù)交流會論文集(Ⅱ)[C];2012年
4 王青;謝波;陳根才;;基于神經(jīng)網(wǎng)絡(luò)的漢語語音情感識別[A];第一屆中國情感計算及智能交互學(xué)術(shù)會議論文集[C];2003年
5 張鼎天;徐明星;;基于調(diào)制頻譜特征的自動語音情感識別[A];第十二屆全國人機語音通訊學(xué)術(shù)會議(NCMMSC'2013)論文集[C];2013年
6 童燦;;基于boosting HMM的語音情感識別[A];2008年中國高校通信類院系學(xué)術(shù)研討會論文集(下冊)[C];2009年
7 戴明洋;楊大利;徐明星;;語音情感識別中UBM訓(xùn)練集的組成研究[A];第十一屆全國人機語音通訊學(xué)術(shù)會議論文集(一)[C];2011年
8 張衛(wèi);張雪英;孫穎;;基于HHT邊際Teager能量譜的語音情感識別[A];第十二屆全國人機語音通訊學(xué)術(shù)會議(NCMMSC'2013)論文集[C];2013年
相關(guān)博士學(xué)位論文 前6條
1 孫亞新;語音情感識別中的特征提取與識別算法研究[D];華南理工大學(xué);2015年
2 韓文靜;語音情感識別關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年
3 謝波;普通話語音情感識別關(guān)鍵技術(shù)研究[D];浙江大學(xué);2006年
4 尤鳴宇;語音情感識別的關(guān)鍵技術(shù)研究[D];浙江大學(xué);2007年
5 劉佳;語音情感識別的研究與應(yīng)用[D];浙江大學(xué);2009年
6 趙臘生;語音情感特征提取與識別方法研究[D];大連理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 陳曉東;基于卷積神經(jīng)網(wǎng)絡(luò)的語音情感識別[D];華南理工大學(xué);2015年
2 孫志鋒;語音情感識別研究[D];陜西師范大學(xué);2015年
3 譚發(fā)曾;語音情感狀態(tài)模糊識別研究[D];電子科技大學(xué);2015年
4 陳鑫;相空間重構(gòu)在語音情感識別中的研究[D];長沙理工大學(xué);2014年
5 李昌群;基于特征選擇的語音情感識別[D];合肥工業(yè)大學(xué);2015年
6 陳文汐;基于核函數(shù)的語音情感識別技術(shù)的研究[D];東南大學(xué);2015年
7 韓文靜;基于神經(jīng)網(wǎng)絡(luò)的語音情感識別技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2007年
8 王穎;自適應(yīng)語音情感識別方法研究[D];江蘇大學(xué);2009年
9 梁智蘭;基于獨立分量分析的語音情感識別研究[D];哈爾濱工程大學(xué);2009年
10 郭春宇;語音情感識別技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號:2254646
本文鏈接:http://sikaile.net/kejilunwen/wltx/2254646.html