量子信息隱藏協(xié)議研究
[Abstract]:With the rapid development of quantum information technology, the outstanding research results of quantum secure communication theory and implementation technology have brought revolutionary impact to the existing information science research and aroused people's great concern. Quantum information hiding uses quantum states as the carriers of information transmission, uses quantum information and quantum computation to hide, extract and transmit quantum or classical secret messages. Its concealment and security can be obtained from the basic principles of quantum mechanics. Quantum information hiding is a new research direction combining information hiding with quantum information science. It is also a new bright spot in information security technology research. It has very important research value and broad application prospects.
Based on the theory and characteristics of quantum mechanics and the quintessence of classical information hiding theory and thought method, this paper studies the key basic theory of quantum information hiding protocol, quantum covert channel protocol and quantum steganography association by using quantum information science method. Quantum covert channel protocol and quantum steganography protocol are two important branches of quantum information hiding protocol. The former establishes a covert channel to transmit secret messages in the communication channels of other quantum secure communication protocols, and the latter embeds secret messages into other seemingly unrelated quantum carriers. It can only be read by the intended receiver. The specific research work in this paper is as follows:
(1) The key basic theories of quantum information hiding are studied and some achievements are obtained. Firstly, the concept of quantum hidden channel is proposed, which is formally introduced into the field of quantum information. Secondly, the performance analysis part of each quantum information hiding protocol in this paper studies the new connotation of the performance evaluation index in the field of quantum information. In particular, in order to accurately reflect the relationship between the consumption of quantum resources and the embedded capacity, a quantitative evaluation index of the embedded capacity, namely the covert communication efficiency, is proposed. Secondly, the quantum direct communication protocol which is the basic support for quantum information hiding is studied. Based on Grover search algorithm, a deterministic secure quantum communication (DSQC) protocol and a quantum secure direct communication (QSDC) protocol are designed.
(2) This paper analyzes the reasons for establishing covert channel in QSDC channel, and designs a quantum covert channel protocol based on arbitrary QSDC channel. Firstly, by analyzing the role and characteristics of unitary operation in QSDC protocol, it points out the reasons for establishing covert channel in QSDC channel. Because of the function of information and the universality and confidentiality independent of the quantum state, we can use the unitary operation used in the QSDC channel to establish a covert channel that only the two parties know to transmit secret messages. Secondly, we design a quantum covert channel protocol based on arbitrary QSDC protocol. Finally, a quantum covert channel protocol for transmitting quantum information is proposed based on quantum teleportation protocol. (3) With the help of the formula of entanglement swapping of quantum states, quantum covert messages based on entanglement swapping of quantum states are studied in depth. On the one hand, a simple secret message encoding rule is designed based on the relation between input state and output state of generalized Bell state entanglement swapping, and a quantum covert channel protocol without any auxiliary particles is proposed. On the other hand, quantum covert based on_-type entanglement swapping proposed by Qu et al is pointed out. In order to overcome the shortcomings of the channel protocol, an improved scheme is proposed. It is difficult to encode a 4-bit secret message at one time because there are 8 sets of possible outputs of any_-type entanglement switching and 16 different_-type entanglement switching. An improved quantum covert channel protocol is proposed based on the relation between the input state and the output state. Compared with the previous covert channel protocols based on entanglement swapping of quantum states, this kind of protocol not only has lower computational complexity, but also does not consume any auxiliary quantum states.
(4) To further improve the efficiency of covert communication, an efficient quantum covert channel protocol based on the direct product states of two-particle orthogonal quantum states is proposed. Firstly, based on the direct product states of two Bell states, a secret message encoding rule with low computational complexity is proposed, and a universal and efficient quantum covert protocol is designed. In order to further improve the embedded capacity and the efficiency of covert communication, an efficient quantum covert channel protocol based on the direct product states of two-particle orthogonal quantum states is proposed. Low computational complexity. When the number of quantum states in the initial state sequence of QSDC channel is not too large, these protocols have large embedded capacity and high covert communication efficiency.
(5) The defects of a GHZ4-based quantum steganography protocol (AMH protocol) coding rule are pointed out, the reasons are analyzed, and an improved scheme is given. The eight sets of unitary operations given in AMH protocol can only transform GHZ4 states into six rather than eight different quantum states. Therefore, any one of the unitary operations can not accurately encode one. In order to solve this problem, eight sets of unitary operations, which can transform GHZ4 state into eight different quantum states, are presented. Each set of unitary operations can encode a 3-bit secret message successfully.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:O413.1;TN918
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中國科學(xué)院量子信息重點(diǎn)實(shí)驗(yàn)室[J];物理;2008年08期
2 ;《量子信息哲學(xué)》出版[J];自然辯證法研究;2012年10期
3 郭光燦;量子信息現(xiàn)狀與未來[J];量子光學(xué)學(xué)報;2000年03期
4 段艷平;量子信息與測量教育部重點(diǎn)實(shí)驗(yàn)室[J];北京大學(xué)學(xué)報(自然科學(xué)版);2001年04期
5 郭光燦;量子信息技術(shù)[J];中國科學(xué)院院刊;2002年05期
6 嚴(yán)肅;量子信息技術(shù)的新進(jìn)展[J];中南民族大學(xué)學(xué)報(自然科學(xué)版);2002年04期
7 郝寧湘;量子信息論及其哲學(xué)思考[J];科技導(dǎo)報;2003年06期
8 ;量子信息名詞[J];物理;2005年11期
9 吳國林;;量子信息哲學(xué)正在興起[J];哲學(xué)動態(tài);2006年10期
10 古衛(wèi)芳;;從量子信息的產(chǎn)生淺析科學(xué)的發(fā)現(xiàn)問題[J];滄桑;2007年02期
相關(guān)會議論文 前10條
1 方錦清;畢橋;;一種量子信息網(wǎng)絡(luò)及其若干特性[A];第三屆全國復(fù)雜動態(tài)網(wǎng)絡(luò)學(xué)術(shù)論壇論文集[C];2006年
2 郭國平;;表面等離子體等納米結(jié)構(gòu)在量子信息中的運(yùn)用研究[A];第十二屆全國量子光學(xué)學(xué)術(shù)會議論文摘要集[C];2006年
3 陳宗海;張陳斌;董道毅;;量子信息系統(tǒng)仿真[A];'2003系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文集[C];2003年
4 郭光燦;;量子信息的若干問題[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
5 靳靜;趙慶柏;宋鶴山;唐一源;;腦高級功能的量子信息模型的設(shè)想[A];大連理工大學(xué)生物醫(yī)學(xué)工程學(xué)術(shù)論文集(第2卷)[C];2005年
6 孫昌璞;吳令安;;“糾纏態(tài)與量子信息”研討會[A];Quantum Entanglement and Quantum Information--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
7 周靜;張睿lm;雷煜卿;盧利峰;盧錕;;日本量子信息通信技術(shù)研究現(xiàn)狀及發(fā)展趨勢[A];2012年電力通信管理暨智能電網(wǎng)通信技術(shù)論壇論文集[C];2013年
8 楊曉冬;王安民;馬小三;牛萬青;尤浩;徐楓;;利用核磁共振產(chǎn)生無耦合自旋之間的糾纏[A];第十一屆全國量子光學(xué)學(xué)術(shù)會議論文摘要集[C];2004年
9 杜江峰;;基于摻雜金剛石體系的單自旋量子調(diào)控[A];第十五屆全國量子光學(xué)學(xué)術(shù)報告會報告摘要集[C];2012年
10 吳令安;;《物理學(xué)名詞》修訂版增添量子信息新詞[A];第十六屆全國量子光學(xué)學(xué)術(shù)報告會報告摘要集[C];2014年
相關(guān)重要報紙文章 前10條
1 記者 胡其峰;量子信息技術(shù)應(yīng)用前景廣闊[N];光明日報;2012年
2 記者 張強(qiáng);專家學(xué)者在北京研討量子信息[N];科技日報;2007年
3 記者 吳長鋒;量子信息:開啟未來時代的密鑰[N];科技日報;2007年
4 彭默馨 崔風(fēng)鳴;量子信息技術(shù)重新涂抹戰(zhàn)神的面孔[N];學(xué)習(xí)時報;2013年
5 記者 桂運(yùn)安;中科大量子信息研究取得新進(jìn)展[N];安徽日報;2014年
6 王炳堯;第二屆量子信息研討會召開[N];科技日報;2004年
7 ;日本開展“量子信息通信”研究[N];人民郵電;2000年
8 本報記者 張曄 通訊員 張前;量子信息技術(shù)離我們還有多遠(yuǎn)[N];科技日報;2009年
9 記者 華凌;觀察量子信息新方法可及時糾錯量子狀態(tài)[N];科技日報;2013年
10 中國科技大學(xué)理學(xué)院副院長 郭光燦;量子信息技術(shù)[N];大眾科技報;2001年
相關(guān)博士學(xué)位論文 前10條
1 瞿治國;量子信息隱藏協(xié)議設(shè)計與分析的研究[D];北京郵電大學(xué);2011年
2 王雅紅;量子信息遠(yuǎn)程傳輸?shù)睦碚撗芯縖D];大連理工大學(xué);2008年
3 陸曉銘;開放系統(tǒng)中的量子信息[D];浙江大學(xué);2011年
4 黃婷;利用腔QED技術(shù)進(jìn)行的量子信息過程[D];中國科學(xué)技術(shù)大學(xué);2005年
5 於亞飛;多體糾纏在量子信息中的應(yīng)用[D];中國科學(xué)院研究生院(武漢物理與數(shù)學(xué)研究所);2003年
6 曹原;基于自由空間信道的量子信息實(shí)驗(yàn)研究[D];中國科學(xué)技術(shù)大學(xué);2012年
7 吳青林;高速電子學(xué)及其在量子信息技術(shù)中的應(yīng)用[D];中國科學(xué)技術(shù)大學(xué);2008年
8 徐淑獎;量子信息隱藏協(xié)議研究[D];北京郵電大學(xué);2014年
9 徐楓;量子模擬和糾纏證據(jù)的相關(guān)研究[D];中國科學(xué)技術(shù)大學(xué);2006年
10 任林源;量子信息的克隆、刪除、分辨與概率隱形傳態(tài)[D];陜西師范大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 吳韜;量子信息在腔QED中的傳送[D];安徽大學(xué);2007年
2 古衛(wèi)芳;關(guān)于量子信息思想發(fā)展史的研究[D];山西大學(xué);2007年
3 陸遠(yuǎn);對量子信息涵義的哲學(xué)思考[D];山西大學(xué);2012年
4 單傳家;腔QED中若干量子信息問題的研究[D];曲阜師范大學(xué);2006年
5 劉平萍;量子信息論中熱糾纏的研究[D];西南大學(xué);2008年
6 王國友;簇態(tài)在量子信息中的應(yīng)用研究[D];湖南師范大學(xué);2007年
7 白娟;基于交叉克爾非線性的非局域貝爾態(tài)測量和量子信息轉(zhuǎn)移[D];延邊大學(xué);2012年
8 胡桂玉;量子信息若干問題的研究[D];安徽大學(xué);2010年
9 宋偉;量子克隆和量子刪除的研究[D];安徽大學(xué);2005年
10 伍典策;基于量子中繼器的量子信息網(wǎng)絡(luò)體系結(jié)構(gòu)及路由技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2012年
,本文編號:2250846
本文鏈接:http://sikaile.net/kejilunwen/wltx/2250846.html