基于全光量化的光譜壓縮方法研究
[Abstract]:With the development of science and technology, digital signal processing exists in all aspects of our life because of its many advantages. In communication and military, digital signal processing technology has completely changed the communication and radar system of the old era, made it highly digital, and greatly improved the ability of signal transmission and processing. With the higher expectation of digital signal processing, the bandwidth and sampling rate of ADC (ADC) are also higher. Traditional electronic ADC can not meet the requirements of high speed and high precision analog-to-digital converters because of its "electronic bottleneck". Therefore, optical ADC, as an effective method to break through the bottleneck of electronic ADC, has been paid more and more attention in recent years. This paper focuses on all-optical quantization based on soliton self-frequency shift effect. A new spectral compression method, which is based on the (NOLM) structure of nonlinear fiber loop mirror, is proposed to improve the precision of all-optical quantization. The feasibility of this method is verified by simulation and experiment. The main contents of the thesis are as follows: 1. The development and application of optical ADC are introduced systematically. The discovery of soliton self-frequency shift and its development in all-optical quantization are summarized. The generalized nonlinear Schrodinger equation, which is suitable for optical pulse propagation in optical fiber, is derived and studied by Maxwell equations. The numerical method of solving generalized nonlinear Schrodinger equation, the fractional Fourier method, is also discussed. Some nonlinear effects of pulse propagation in optical fiber are introduced. The mechanism of self-frequency shift of soliton and the influencing factors of frequency shift are analyzed. According to the basic principle of NOLM, the spectral compression method based on NOLM is proposed, and the numerical analysis and experimental study are carried out. The numerical simulation results show that: NOLM can compress the non-chirped hyperbolic cut pulse and reduce the compressed spectral sideband (or pedestal) by changing the structure parameters, so that the non-chirped hyperbolic cut pulse of 300fs can be compressed by this structure parameter. The simulation results show that the side band energy ratio is 9.39% and the spectrum width is 1.6nm. In the experiment, the sub-picosecond pulse produced by NPR passive mode-locked fiber laser is compressed. The spectrum width of 1.52nm and the compression ratio of 6.53 are obtained by considering the side band energy ratio and compression ratio. The second order spectral compression of dispersion-increasing fiber (DIF) and anomalous dispersion high nonlinear fiber (HNLF) series NOLM are studied numerically. The simulation results show that the maximum compression ratio of 10.93 can be obtained when the soliton number N is 0.5 ~ (11) ~ (1.4) when the NOLM is connected to different types of DIF, and when the NOLM is connected to the anomalous dispersion high nonlinear fiber, when the NOLM is HNLF, the maximum compression ratio can be obtained. Increase the compression ratio from 7. 33 to 11. 9. A compression ratio of 46.67 can be obtained when NOLM is a dispersion-shifted fiber.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN911.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳穎;張書仙;;基于分裂超連續(xù)光譜的全光量化方案研究[J];光通信技術(shù);2010年02期
2 趙永鵬,葉培大;光網(wǎng)絡(luò)中的全光再生[J];半導(dǎo)體光電;2001年03期
3 李利平;王博;;一種新型全光因特網(wǎng)方案設(shè)計及性能仿真[J];光通信技術(shù);2014年01期
4 紀(jì)越峰,柏琳,徐大雄;全光地址識別機理的研究[J];光學(xué)學(xué)報;2004年01期
5 沈鑫;邱昆;;一種新型的全光再生節(jié)點[J];電子科技大學(xué)學(xué)報;2006年06期
6 李將;鄧大鵬;錢鳳臣;曹東東;;一種全光3R再生方案的研究[J];光通信技術(shù);2013年03期
7 劉汝斌;于晉龍;王菊;孟天暉;王文睿;苗旺;孫斌;楊恩澤;;全光3R系統(tǒng)再生能力的測試方法研究[J];光電子.激光;2013年07期
8 劉穎;王榮;;全光交換關(guān)鍵技術(shù)—全光標(biāo)簽交換[J];山西電子技術(shù);2008年02期
9 王菊;于晉龍;羅俊;王文睿;韓丙辰;吳波;郭精忠;楊恩澤;;基于信號抽運的光纖光參量放大的全光3R再生系統(tǒng)[J];物理學(xué)報;2011年09期
10 楊祥林;;全光接力通信技術(shù)[J];東南大學(xué)學(xué)報;1992年03期
相關(guān)會議論文 前5條
1 陳穎;陳向?qū)?;基于光纖延遲線的全光量化編碼方案研究[A];2009年先進光學(xué)技術(shù)及其應(yīng)用研討會論文集(下冊)[C];2009年
2 周云峰;伍劍;林金桐;;利用TOAD實現(xiàn)全光邏輯操作的實驗研究[A];第九屆全國青年通信學(xué)術(shù)會議論文集[C];2004年
3 王凌;張民;趙永鵬;葉培大;;新型基于SOA-MZI的高速全光非門及其性能分析[A];全國第十一次光纖通信暨第十二屆集成光學(xué)學(xué)術(shù)會議(OFCIO’2003)論文集[C];2003年
4 牛長流;張民;葉培大;;基于SOA-MZI的高速全光邏輯門設(shè)計[A];2007通信理論與技術(shù)新發(fā)展——第十二屆全國青年通信學(xué)術(shù)會議論文集(上冊)[C];2007年
5 周敏娟;孫軍強;;基于非線性光纖環(huán)鏡的40-Gb/s全光異或門[A];全國第十三次光纖通信暨第十四屆集成光學(xué)學(xué)術(shù)會議論文集[C];2007年
相關(guān)碩士學(xué)位論文 前10條
1 王同剛;全光正交頻分復(fù)用技術(shù)的研究[D];西安電子科技大學(xué);2011年
2 安俊鴿;全光2R再生器的功率轉(zhuǎn)移特性研究[D];電子科技大學(xué);2013年
3 余歡;全光正交頻分復(fù)用系統(tǒng)解復(fù)用器的研究與設(shè)計[D];華中科技大學(xué);2013年
4 李勝男;高精度全光量化方法研究[D];電子科技大學(xué);2012年
5 白石磊;基于交叉增益調(diào)制效應(yīng)的全光邏輯器件研究[D];南京郵電大學(xué);2014年
6 陳祥;全光緩存關(guān)鍵技術(shù)的研究[D];華中科技大學(xué);2007年
7 段嬪香;光纖通信中的全光采樣和信號再生技術(shù)研究[D];電子科技大學(xué);2010年
8 李芳;基于高非線性光纖中四波混頻效應(yīng)的全光邏輯門研究[D];浙江工業(yè)大學(xué);2013年
9 楊帆;基于全光量化的光譜壓縮方法研究[D];電子科技大學(xué);2014年
10 梁俊強;基于高非線性光纖中的非線性效應(yīng)產(chǎn)生全光隨機數(shù)[D];太原理工大學(xué);2013年
,本文編號:2223513
本文鏈接:http://sikaile.net/kejilunwen/wltx/2223513.html