SAR圖像近港艦船目標(biāo)檢測技術(shù)研究
[Abstract]:Ship target detection using synthetic Aperture Radar (Synthetic Aperture) images is of great significance for military intelligence acquisition, marine surveillance and fisheries control, and has become a research hotspot in the field of marine remote sensing. In the near port area, ships call in and out frequently, which is of great value for detection. Therefore, it is of great practical significance to study the detection technology of ships near port in SAR images. Aiming at the problem of eliminating land interference and eliminating clutter false alarm in near-port SAR image, this paper uses the method of combining theory with practice to segment the SAR image by using the method of combining theory with practice. The key technologies of ship target detection and identification are studied in detail. Ship detection is essentially a data level screening problem. In view of the SAR images in the near port region, the purpose of ship target detection is mainly achieved by sea and land segmentation, target detection and false alarm discrimination. Land and sea segmentation is to remove land area, target detection is to extract ROI slices from the ocean that may be a ship target, false alarm identification is to eliminate false alarm from the detection result, and finally to output ship target. According to the above ideas, the work is as follows: in the SAR image, the background of the near port area is complex, the wharf and the ship belong to the strong scattering target, and the gray level is close. When the ship is moored near the dock, it appears to be connected with the wharf on the image. Traditional target detection method is difficult to separate ship from wharf correctly. In order to solve this problem, a new ship detection method is proposed in this paper. Based on the segmentation of land and sea, the optical image of the same region is taken as a priori knowledge, and the automatic registration of the SAR image and the optical image is carried out. The optical template of the port is accurately mapped to the SAR image, and then the docking ship is separated from the wharf, and then the global CFAR detection is carried out in the limited ocean area to extract the ship target quickly. Feature-based discriminant method is the most widely used target identification method at present. In this paper, a new discriminant feature, the pixel aggregation feature, is proposed based on the change detection technique for the difference between ship target and clutter false alarm. This feature can quantitatively evaluate the aggregation degree of the pixels of the strong scattering target in the target region after slice segmentation, and then distinguish the real target from the clutter false alarm. In addition, the geometric feature of ship target is also an important distinguishing feature. However, because of SAR coherent imaging mechanism, it is easy to appear "drag" or "cross" on ship target, which makes it difficult to extract geometric feature of ship target. In order to solve this problem, a method of extracting geometric features of ship objects based on elliptic fitting is proposed according to the approximate elliptical feature of ship contour. The experimental results of real SAR data show that the method can overcome the negative effects of "drag" and "cross" to some extent.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:E925;TN957.52
【相似文獻】
相關(guān)期刊論文 前10條
1 陳海亮;雷琳;周石琳;;一種抗碎云干擾的海上艦船目標(biāo)檢測方法[J];計算機工程與科學(xué);2010年12期
2 李思純;楊德森;金莉萍;;基于互雙譜與徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)的艦船目標(biāo)分類(英文)[J];Journal of Marine Science and Application;2009年01期
3 劉松濤,沈同圣,韓艷麗,周曉東;艦船目標(biāo)海天線提取方法研究[J];激光與紅外;2003年01期
4 叢瑜;周偉;于仕財;郭明;;一種對港口影像進行艦船目標(biāo)提取方法[J];計算機仿真;2014年01期
5 李為民,石志廣,付強;艦船目標(biāo)與舷外干擾的電磁特征分析與鑒別方法研究[J];湖南科技大學(xué)學(xué)報(自然科學(xué)版);2004年04期
6 山鵬;張振華;王曉紅;;基于艦船目標(biāo)的極化SAR改進濾波算法研究[J];遙測遙控;2011年05期
7 王彥情;馬雷;田原;;光學(xué)遙感圖像艦船目標(biāo)檢測與識別綜述[J];自動化學(xué)報;2011年09期
8 王勇;許小劍;;海上艦船目標(biāo)的寬帶雷達散射特征信號仿真[J];航空學(xué)報;2009年02期
9 閆海鵬;于勇;張彬;;基于實測數(shù)據(jù)的艦船目標(biāo)前視成像方法研究[J];遙測遙控;2014年04期
10 王玉菊;王學(xué)軍;岳麗軍;莫欽華;;多星對艦船目標(biāo)聯(lián)合探測能力研究[J];計算機仿真;2010年07期
相關(guān)會議論文 前9條
1 王娟;慈林林;姚康澤;;基于分形的SAR圖像艦船目標(biāo)檢測[A];全國第13屆計算機輔助設(shè)計與圖形學(xué)(CAD/CG)學(xué)術(shù)會議論文集[C];2004年
2 徐陽;張雪蘭;王娟;;SAR圖像艦船目標(biāo)處理研究綜述[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
3 李文武;李智勇;粟毅;;一種聯(lián)合灰度和紋理特征的光學(xué)圖像艦船目標(biāo)檢測方法[A];第十四屆全國圖象圖形學(xué)學(xué)術(shù)會議論文集[C];2008年
4 陳青華;謝曉方;李宗升;郭天杰;;艦船目標(biāo)紅外視景仿真研究[A];第二屆紅外成像系統(tǒng)仿真測試與評價技術(shù)研討會論文集[C];2008年
5 韓昭穎;種勁松;;極化SAR圖像艦船目標(biāo)檢測算法綜述[A];中國航空學(xué)會信號與信息處理專業(yè)全國第八屆學(xué)術(shù)會議論文集[C];2004年
6 張輝;杜春;孫浩;計科峰;;基于CV模型和形狀信息的光學(xué)遙感艦船目標(biāo)分割方法[A];2013年中國智能自動化學(xué)術(shù)會議論文集(第三分冊)[C];2013年
7 何友金;李凱永;任建廣;;一種改進的基于遞歸門限分析的紅外艦船目標(biāo)圖像分割方法[A];2007年光電探測與制導(dǎo)技術(shù)的發(fā)展與應(yīng)用研討會論文集[C];2007年
8 許曼;牛照東;陳曾平;;一種新的低信噪比紅外艦船目標(biāo)自動檢測方法[A];2007年光電探測與制導(dǎo)技術(shù)的發(fā)展與應(yīng)用研討會論文集[C];2007年
9 謝波;李春升;喬凱;于澤;;基于GRECO的艦船目標(biāo)高頻區(qū)RCS計算方法在VC++6.0中實現(xiàn)機制[A];第七屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 桂陽;基于機載視覺的無人機自主著艦引導(dǎo)關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
2 段崇雯;基于SAR成像的海面艦船目標(biāo)特征參數(shù)估計[D];國防科學(xué)技術(shù)大學(xué);2013年
3 邢相薇;HRWS SAR圖像艦船目標(biāo)監(jiān)視關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
4 種勁松;合成孔徑雷達圖像艦船目標(biāo)檢測算法與應(yīng)用研究[D];中國科學(xué)院研究生院(電子學(xué)研究所);2002年
相關(guān)碩士學(xué)位論文 前10條
1 趙荻;海上艦船目標(biāo)監(jiān)測方法研究[D];北京化工大學(xué);2015年
2 趙志;基于星載SAR與AIS綜合的艦船目標(biāo)監(jiān)視關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2013年
3 曹芳;基于SAR圖像的海面艦船目標(biāo)檢測與鑒別算法研究[D];西安電子科技大學(xué);2014年
4 李俊敏;SAR圖像艦船目標(biāo)檢測方法研究[D];西安電子科技大學(xué);2014年
5 ;劢;爆炸沖擊波對艦船目標(biāo)內(nèi)部結(jié)構(gòu)毀傷的可視化仿真研究[D];北京理工大學(xué);2016年
6 張羽;基于云計算的艦船目標(biāo)圖像識別[D];華南理工大學(xué);2016年
7 張小強;SAR圖像近港艦船目標(biāo)檢測技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
8 張勝輝;艦船目標(biāo)紅外中/長波特性分析與檢測方法研究[D];國防科學(xué)技術(shù)大學(xué);2015年
9 夏東W,
本文編號:2172863
本文鏈接:http://sikaile.net/kejilunwen/wltx/2172863.html