基于“螢火蟲同步”的無線傳感器網(wǎng)絡(luò)分布式時(shí)間同步技術(shù)研究
[Abstract]:Although the centralized time synchronization technology of wireless sensor test networks has been improved day by day, its scalability, poor survivability and the accumulation of synchronization errors with the increase of hops have always existed, which limits its application scope and flexibility. The emergence of distributed time synchronization method makes it possible to solve the above problems. They do not need to establish the whole network origin to distribute synchronous messages. Instead, the new nodes exchange information with their neighboring nodes only by using the distributed idea. Then the time synchronization of the whole network is realized by multi-point cooperation. The most enlightening research is the application of the theory of "Firefly synchronization" to time synchronization in wireless sensor networks. The difficulties in this process are the complex topology of wireless sensor networks and the existence of random coupling delay. On the basis of reading a lot of literatures about the phenomenon of firefly synchronization and the time synchronization technology of wireless sensor networks, this paper proposes a WRFA mechanism to improve the performance of network synchronization, combining with the famous MS model and RFA synchronization mechanism. The mechanism of variable coupling strength and the measures to deal with the sudden change of transmission delay. In the phase of hardware verification, a synchronous verification method which relies on GPS chip to provide high precision time reference is proposed, which is different from that of serial port, data acquisition card and industrial computer. The main contents of this paper are as follows: 1. The establishment process of synchronous simulation model is described. Firstly, the network model is established according to the random distribution position of network nodes and the communication delay between nodes, and then the basic mathematical model of node synchronization algorithm is established, and the model is discretized according to the hardware situation. Linearize and remove floating-point operations. Finally, test terminal modules are added to the model. The real-time phase information of all nodes in the network and the variation of the maximum phase difference between nodes with simulation time are displayed. 2. In view of the existence of coupling delay and network topology change, the synchronization of the system is reduced. The WRFA mechanism of state fluctuation, At the same time, the mechanism of variable coupling strength to improve synchronization accuracy and synchronization speed and the mechanism to deal with the sudden change of packet transmission delay are proposed. Then combined with the simulation model established in the front, the new mechanism is simulated and verified, which can achieve the desired results. 3. Finally, the hardware verification platform and verification technology are established. Firstly, it is proposed to use the high precision of GPS to provide a unified and accurate time reference for the synchronization method. On the one hand, it can avoid the complicated circuit connection, and on the other hand, it will not introduce too much uncertainty error. Then the composition of each function module of the hardware is introduced. Finally, the synchronization method is preliminarily verified by using the established hardware.
【學(xué)位授予單位】:北京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TP212.9;TN929.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王妙婷;;淺談構(gòu)建目標(biāo)系統(tǒng)的時(shí)間同步技術(shù)平臺(tái)[J];科技傳播;2011年08期
2 賀鵬,曾維魯;電廠數(shù)據(jù)采集與監(jiān)控系統(tǒng)的時(shí)間同步技術(shù)[J];華北電力大學(xué)學(xué)報(bào);2000年03期
3 邴志光;束坤;;運(yùn)動(dòng)多站的高精度時(shí)間同步技術(shù)[J];艦船電子對抗;2011年04期
4 周耕;;改進(jìn)無線Mesh網(wǎng)系統(tǒng)的時(shí)間同步技術(shù)研究[J];中國新通信;2013年22期
5 張立新,王偉,王崗;雙向比對遠(yuǎn)距離時(shí)間同步技術(shù)[J];空間電子技術(shù);2002年02期
6 馮海強(qiáng),徐曉蘇;分布式姿態(tài)基準(zhǔn)系統(tǒng)中時(shí)間同步技術(shù)的實(shí)現(xiàn)[J];現(xiàn)代電子技術(shù);2004年07期
7 劉曉萍;曹紀(jì)東;胡湘華;劉利;黃雙臨;馬民;;服務(wù)器高精度時(shí)間同步技術(shù)研究[J];計(jì)算機(jī)技術(shù)與發(fā)展;2012年02期
8 倪翠蘭;;淺述電力系統(tǒng)通信網(wǎng)絡(luò)傳輸方式及時(shí)間同步技術(shù)[J];中國新技術(shù)新產(chǎn)品;2011年18期
9 董甲東,賀鵬;分布式時(shí)間同步技術(shù)在水利水電工程中的應(yīng)用[J];三峽大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年04期
10 欒銳;徐衛(wèi)明;蔣林宏;張立華;;偽衛(wèi)星定位系統(tǒng)雙向時(shí)間同步技術(shù)[J];測控技術(shù);2009年06期
相關(guān)會(huì)議論文 前7條
1 孫中尉;華宇;黃長江;;高精度時(shí)間同步技術(shù)研究[A];2009全國時(shí)間頻率學(xué)術(shù)會(huì)議論文集[C];2009年
2 王雯;馮桂珠;;宣鋼網(wǎng)絡(luò)時(shí)間同步技術(shù)的實(shí)現(xiàn)[A];中國計(jì)量協(xié)會(huì)冶金分會(huì)2007年會(huì)論文集[C];2007年
3 劉曉萍;曹紀(jì)東;胡湘華;劉利;馬民;黃雙臨;;服務(wù)器高精度時(shí)間同步技術(shù)研究[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
4 郭茂文;;DSL時(shí)間同步技術(shù)研究[A];中國通信學(xué)會(huì)信息通信網(wǎng)絡(luò)技術(shù)委員會(huì)2011年年會(huì)論文集(上冊)[C];2011年
5 張慶蘭;聶桂根;;利用中國大陸地區(qū)IGS站進(jìn)行時(shí)間同步技術(shù)的研究[A];第二屆中國衛(wèi)星導(dǎo)航學(xué)術(shù)年會(huì)電子文集[C];2011年
6 李世強(qiáng);楊汝良;;星載分布式SAR系統(tǒng)時(shí)間同步技術(shù)[A];第二屆微波遙感技術(shù)研討會(huì)摘要全集[C];2006年
7 蘇亞;;時(shí)間同步技術(shù)在鐵路信息系統(tǒng)中的應(yīng)用[A];全面建設(shè)小康社會(huì):中國科技工作者的歷史責(zé)任——中國科協(xié)2003年學(xué)術(shù)年會(huì)論文集(上)[C];2003年
相關(guān)重要報(bào)紙文章 前1條
1 瑞文;國網(wǎng)電科院兩項(xiàng)目入選國家科技計(jì)劃[N];國家電網(wǎng)報(bào);2010年
相關(guān)碩士學(xué)位論文 前10條
1 謝露;基于分組網(wǎng)絡(luò)的時(shí)間同步技術(shù)研究及實(shí)現(xiàn)[D];電子科技大學(xué);2011年
2 林思佳;時(shí)頻子系統(tǒng)遠(yuǎn)程時(shí)間同步技術(shù)研究[D];中國科學(xué)院研究生院(國家授時(shí)中心);2013年
3 趙海磊;基于“螢火蟲同步”的無線傳感器網(wǎng)絡(luò)分布式時(shí)間同步技術(shù)研究[D];北京理工大學(xué);2015年
4 張鶴鳴;基于分組網(wǎng)絡(luò)的時(shí)間同步技術(shù)的研究與實(shí)現(xiàn)[D];西南交通大學(xué);2011年
5 賀宇翔;POWERLINK時(shí)間同步技術(shù)優(yōu)化研究及實(shí)現(xiàn)[D];武漢理工大學(xué);2013年
6 王艇;長時(shí)延網(wǎng)絡(luò)時(shí)間同步技術(shù)的研究[D];上海交通大學(xué);2011年
7 李美霖;Zigbee網(wǎng)絡(luò)節(jié)點(diǎn)設(shè)計(jì)及時(shí)間同步技術(shù)研究與實(shí)現(xiàn)[D];西安工業(yè)大學(xué);2013年
8 李卓;外場彈道多測試站時(shí)間同步技術(shù)[D];西安工業(yè)大學(xué);2014年
9 楊博真;水下傳感器網(wǎng)絡(luò)時(shí)間同步技術(shù)研究[D];中國海洋大學(xué);2014年
10 周建紅;基于MDS系統(tǒng)的定位算法與同步技術(shù)研究[D];電子科技大學(xué);2012年
本文編號:2172620
本文鏈接:http://sikaile.net/kejilunwen/wltx/2172620.html