基于稀疏表示和低秩逼近的SAR圖像降斑
[Abstract]:Synthetic Aperture Radar (Synthetic Aperture) has been widely used in military and civil fields because it has the characteristics of all-weather, high resolution and strong penetration. However, the SAR system is affected by speckle noise in the acquisition process of microwave coherent imaging. The presence of speckle noise greatly reduces the resolution of SAR images and affects the subsequent processing and interpretation. Therefore, how to suppress speckle noise in SAR images is very important. Based on the analysis of speckle noise model and statistical characteristics of SAR images, combined with sparse representation theory and low rank approximation theory, several new speckle reduction algorithms for SAR images are proposed in this paper. This article mainly includes the following three aspects: 1. A SAR image speckle reduction algorithm based on clustering and lifting dictionary learning is proposed. Considering a large number of similar image blocks in the image, the K-means clustering algorithm is used to construct the set of similar image blocks. In order to fully mine the texture details contained in image blocks, this chapter uses principal component analysis (PCA) to extract the principal components of similar image blocks and construct corresponding PCA dictionaries. Using the PCA dictionary as the initial dictionary, the lifting dictionary learning algorithm is used to sparse represent and reconstruct the similar image blocks, and the final speckle reduction result. 2. A sparse representation SAR image speckle reduction algorithm based on structural similarity correction clustering is proposed. The speckle noise of SAR images is estimated in directional wave domain by using the multi-directivity and anisotropy of directional wave transform. Considering that similar image blocks not only exist in images of the same scale, but also contain a large number of similar image blocks in different scales, this chapter uses directional wave transform to obtain different scales of image blocks. A clustering algorithm based on structural similarity correction is used to classify image blocks. Finally, the sparse representation algorithm based on clustering is used for sparse representation and reconstruction of each image block, and the final speckle reduction result. 3. An improved spatial adaptive iterative singular value threshold algorithm for SAR image speckle reduction is proposed. Considering the low rank characteristic of similar image block set, this chapter uses singular value decomposition to reconstruct SAR image with low rank approximation, so as to achieve the purpose of speckle reduction. In the process of speckle reduction, in order to preserve the texture information of the image better, the gradient histogram of the original image is used as the reference, and the gradient histogram of the updated image is constrained to achieve the purpose of texture enhancement. This method can not only suppress the speckle noise in the image, but also preserve the point target and texture information of the image.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN957.52
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭軼;蔡體健;;稀疏表示的人臉識(shí)別及其優(yōu)化算法[J];華東交通大學(xué)學(xué)報(bào);2012年01期
2 段菲;章毓晉;;一種面向稀疏表示的最大間隔字典學(xué)習(xí)算法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
3 李仲生;李仁發(fā);蔡則蘇;趙乘麟;;稀疏表示下的非監(jiān)督顯著對(duì)象提取[J];電子學(xué)報(bào);2012年06期
4 段菲;章毓晉;;基于多尺度稀疏表示的場(chǎng)景分類[J];計(jì)算機(jī)應(yīng)用研究;2012年10期
5 胡正平;李靜;白洋;;基于樣本-擴(kuò)展差分模板的聯(lián)合雙稀疏表示人臉識(shí)別[J];信號(hào)處理;2012年12期
6 姜芳芳;;稀疏表示理論在提高數(shù)字圖像質(zhì)量中的應(yīng)用[J];科技創(chuàng)新導(dǎo)報(bào);2012年36期
7 馬莉娜;;增強(qiáng)的兩階段測(cè)試樣本稀疏表示方法[J];福建電腦;2013年07期
8 尹學(xué)忠;樊甫華;;基于字典學(xué)習(xí)的超寬帶信號(hào)稀疏表示與降噪方法[J];計(jì)算機(jī)應(yīng)用研究;2014年06期
9 張佳宇;彭力;;基于聯(lián)合動(dòng)態(tài)稀疏表示方法的多圖像人臉識(shí)別算法[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
10 陳才扣;喻以明;史俊;;一種快速的基于稀疏表示分類器[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
相關(guān)會(huì)議論文 前3條
1 何愛香;劉玉春;魏廣芬;;基于稀疏表示的煤矸界面識(shí)別研究[A];虛擬運(yùn)營(yíng)與云計(jì)算——第十八屆全國(guó)青年通信學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2013年
2 樊亞翔;孫浩;周石琳;鄒煥新;;基于元樣本稀疏表示的多視角目標(biāo)識(shí)別[A];2013年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第五分冊(cè))[C];2013年
3 葛鳳翔;任歲玲;郭鑫;郭良浩;孫波;;微弱信號(hào)處理及其研究進(jìn)展[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2013年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)碩士學(xué)位論文 前10條
1 張琨雨;在線字典訓(xùn)練及加權(quán)差異性稀疏表示的研究[D];大連理工大學(xué);2011年
2 王勇;基于稀疏表示的人臉識(shí)別研究[D];五邑大學(xué);2013年
3 李義真;基于詞包與稀疏表示的場(chǎng)景分類[D];華南理工大學(xué);2013年
4 孫麗花;基于稀疏表示的人臉識(shí)別方法研究[D];河南科技大學(xué);2013年
5 陳天嬌;基于分組稀疏和權(quán)重稀疏表示的人臉識(shí)別研究[D];安徽大學(xué);2014年
6 劉自成;基于稀疏表示的雷達(dá)目標(biāo)角度與距離估計(jì)[D];西安電子科技大學(xué);2014年
7 李立;基于稀疏表示的人臉圖像識(shí)別方法研究[D];南京理工大學(xué);2012年
8 滿江月;基于稀疏表示的代價(jià)敏感性人臉識(shí)別算法研究[D];南京郵電大學(xué);2012年
9 趙廣鑾;稀疏表示在圖像識(shí)別中的應(yīng)用[D];北京郵電大學(xué);2013年
10 羅燕龍;基于局部稀疏表示模型的在線字典學(xué)習(xí)跟蹤算法研究[D];廈門大學(xué);2014年
,本文編號(hào):2156346
本文鏈接:http://sikaile.net/kejilunwen/wltx/2156346.html