基于壓縮感知的視頻重構方法研究
[Abstract]:The compressed sensing theory provides an effective way to compress the direct sampling of analog signals into digital forms, with the characteristics of direct information sampling. In this theoretical framework, the sampling and compression of signals are far lower than the very low rate of Nyquist sampling rate, which significantly reduces the cost of data acquisition, storage and transmission, and the signal. Processing time and computational cost are of great military and civil value. Video acquisition and reconstruction based on compressed sensing are far less than the amount of data obtained from traditional sampling methods. Thus, the sampling and storage costs of the signals can be reduced greatly, thus the requirements and difficulties of the acquisition devices can be reduced; at the same time, it can be reduced. The simultaneous compression of video signal acquisition reduces the complexity of the encoder, reduces the demand for memory and computing resources, and makes low cost (super) high resolution video acquisition and compression in the resource constrained environment. However, the application of compressed sensing theory to video signals is often due to the traditional orthogonal design. The sparsity of the transform coefficients is difficult to achieve the requirements of the compressed sensing reconstruction and lead to the poor reconstruction quality. And because the traditional compression sensing reconstruction algorithm only takes into account the sparsity of the signal, it does not take into account the other structural features of the signal itself, and makes it difficult to achieve the best quality of the video reconfiguration. The largest characteristic of the general signal is the existence of a lot of space / time redundancy, so how to use the correlation is the main problem to study the video compression perception theory. At present, it is still at the beginning of the research at home and abroad. Based on the compression perception theory, this paper improves the video pressure on the premise of guaranteeing the low complexity of the video sampling terminal. In order to reduce the quality of perceptual reconstruction, this paper focuses on the efficient and sparse reconstruction of video signals. In the traditional compressed sensing framework, the traditional non adaptive structure is transformed into an adaptive video compression perception framework by introducing the spatial time sparsity of video signal, so as to reduce the sampling rate and improve the view of the coding measurement. In this paper, the key technology of video compression perception reconstruction is studied on the National Natural Science Foundation and the special scientific research fund of the doctoral discipline point of the University. The full text is mainly based on the compression perception theory based on the support set, the rate control of video compression perceptual coding end, and the efficient reconstruction of the decoder The algorithm and the video compression perception reconstruction under the distributed framework are studied in four aspects, which are summarized as follows: 1) the compression perception theory with support set assisted and its application in video compression perception are studied for the general signal. The constraint ISO distance of the traditional compression theory is difficult to be verified in practical applications. It is necessary to study the problem of compressed sensing reconstruction with support set under the framework of correlation discriminant theory. This paper theoretically proves that if the predictive support set can satisfy a certain condition on the precision and size, then the stable sparse solution can be obtained by using the weighted 1L norm optimization, and compared to the correlation criterion of the unsupported set, this method can be obtained. It is proved that using the support set can obtain more weak sufficient conditions and better reconstruction error limit.2), the rate control algorithm is studied under the video compression perception framework to realize adaptive video sampling, which can further improve the quality of the reconstruction of the whole video without increasing the sampling rate. It is impossible to obtain the structural features of the pixel domain of the video signal, which makes it very challenging to study the rate control in the video compression perception framework. In this paper, a novel video compression perception distortion model is proposed first. Then, a joint optimization algorithm of sampling rate and quantization bit depth is designed by using the model, and the rate distortion is optimized by solving the rate distortion. The optimization problem realizes the optimal sampling rate and bit depth estimation in the sense of rate distortion, and then can achieve the optimal video compression perception reconstruction quality at the same time that the target rate is realized. The simulation experiment results show that the rate control algorithm proposed in this paper can better control the rate of the optical frequency compression measurement, and compared to the traditional view. The frequency compression perception system can greatly improve the rate distortion performance of the reconstructed.3) using the spatial time sparse structure feature of the video signal to study the efficient video compression perception reconstruction algorithm. In this paper, a regularized weighted base tracking denoising method is proposed, which is used to assist the current video signal support set and pixel value. A fast iterative algorithm is constructed based on the alternating direction multiplier method to solve the problem. In addition, a video compression sensing reconstruction method based on the optimal correlation model is proposed by constructing the inter frame correlation model of the video signal in the pixel domain and the measurement domain, and a new method based on the two order is constructed. The simulation results show that the algorithm can make full use of the structural features of video signals to achieve efficient reconstruction, and can provide better sampling rate distortion performance and subjective image quality.4 compared with traditional methods. Finally, this paper focuses on distributed video compression. In this paper, we first study the correlation between the current frame and the edge information frame in the framework of distributed video compression, and construct a novel model of the less sampling correlation noise. Then, on this basis, a distributed maximum likelihood dictionary training is proposed. The video compression perception system, and a system based on dictionary learning and 1L analysis reconstructing the two joint optimization, and the iterative reconstruction algorithm based on the alternating direction multiplier method. The simulation results show that the proposed algorithm can provide better reconstruction quality compared with the traditional distributed video compression perception method.
【學位授予單位】:西安電子科技大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN919.81
【相似文獻】
相關期刊論文 前10條
1 張熾昌;關于掃描隧道顯微術所得圖像的兩種重構方法[J];電子顯微學報;1999年02期
2 伏曉;石進;謝立;;用于自動證據(jù)分析的層次化入侵場景重構方法[J];軟件學報;2011年05期
3 竇麗華;肖楊;;基于信息流的網絡動態(tài)重構方法[J];計算機工程;2007年12期
4 王創(chuàng)新;劉仲云;;一種高速密集視頻監(jiān)控場景背景重構方法[J];數(shù)據(jù)采集與處理;2012年03期
5 郭東明,周偉峰,烏秀春;一種基于單目多幅圖像的三維曲面重構方法[J];計算機工程與應用;2002年09期
6 馬志強,司國東,李柏林;將領域與顯示分離重構方法的應用研究[J];信息技術;2005年05期
7 江明陽;封舉富;;基于魯棒主成分分析的人臉子空間重構方法[J];計算機輔助設計與圖形學學報;2012年06期
8 常艷;;基于二維圖片三維器官重構方法研究[J];計算機仿真;2012年01期
9 要義勇,趙麗萍,楊鴻鵬;敏捷制造模式下質量信息系統(tǒng)的重構方法研究[J];制造業(yè)自動化;1999年01期
10 王海龍,戚飛虎;一種有效的最優(yōu)序參量重構方法[J];中國圖象圖形學報;2001年01期
相關會議論文 前9條
1 劉佶鑫;孫權森;朱近;夏德深;;基于向量總變差的壓縮感知高分辨率遙感圖像重構方法[A];中國光學學會2011年學術大會摘要集[C];2011年
2 黃建國;潘卉青;田書林;;一種高速時域測試儀器中非均勻波形重構方法[A];2008中國儀器儀表與測控技術進展大會論文集(Ⅰ)[C];2008年
3 徐茵;王曉蕊;郝勁波;張建奇;;基于光場模型的自由視點高分辨率集成成像計算重構方法研究[A];2011西部光子學學術會議論文摘要集[C];2011年
4 吳鳳艷;王烈;余志祥;;基于FPGA的動態(tài)局部可重構方法實現(xiàn)[A];2010通信理論與技術新發(fā)展——第十五屆全國青年通信學術會議論文集(下冊)[C];2010年
5 王向軍;賈桂敏;馬金駒;張召才;;基于月球探測數(shù)據(jù)的月面地形重構方法研究[A];第十屆全國光電技術學術交流會論文集[C];2012年
6 許增樸;于德敏;王永強;周聰玲;;三維物體表面輪廓測量與重構方法的分析與仿真[A];立體圖象技術及其應用研討會論文集[C];2005年
7 笪良龍;李韋華;徐景峰;;隨機動態(tài)聲速重構方法研究[A];2011'中國西部聲學學術交流會論文集[C];2011年
8 曾清紅;孫文俊;;多介質大變形流動的MMALE數(shù)值模擬研究[A];第十六屆全國流體力學數(shù)值方法研討會2013論文集[C];2013年
9 李勝忠;蔣昌師;倪其軍;趙峰;;基于FFD重構方法的船型優(yōu)化設計及其模型試驗驗證[A];第十三屆全國水動力學學術會議暨第二十六屆全國水動力學研討會論文集——D水動力學實驗和測試技術[C];2014年
相關博士學位論文 前3條
1 劉海嘯;基于壓縮感知的視頻重構方法研究[D];西安電子科技大學;2014年
2 張家晨;軟件重構方法的研究[D];吉林大學;2004年
3 徐茵;集成成像三維顯示光場轉換與重構方法研究[D];西安電子科技大學;2013年
相關碩士學位論文 前10條
1 丁鋒;一種模型驅動和模式導向相結合的復雜Web系統(tǒng)重構方法[D];南京理工大學;2015年
2 陳楚楚;基于貝葉斯理論的壓縮感知重構方法研究[D];西安電子科技大學;2014年
3 郭強;三維集成成像計算生成與重構方法研究[D];西安電子科技大學;2011年
4 張偉;基于壓縮感知框架的選擇性重構方法[D];西安電子科技大學;2014年
5 齊正霞;嵌入式電子海圖系統(tǒng)軟件重構方法研究[D];哈爾濱工程大學;2007年
6 李登靜;基于FPGA的切換原理與重構方法及其在容錯控制中的應用[D];電子科技大學;2009年
7 徐志強;三維人臉重構方法研究[D];華中科技大學;2009年
8 崔白楊;基于Ridgelet冗余字典的非凸壓縮感知重構方法[D];西安電子科技大學;2013年
9 王立峰;若干特殊區(qū)域的逆散射唯一性問題和電導率間斷面重構方法[D];復旦大學;2008年
10 翟盼盼;交錯多通道信號的采樣及重構方法研究[D];河南大學;2014年
,本文編號:2154171
本文鏈接:http://sikaile.net/kejilunwen/wltx/2154171.html