機(jī)會(huì)干擾對(duì)齊與盲干擾對(duì)齊技術(shù)研究
[Abstract]:Interference Alignment (IA) is the focus of current research. This technology can effectively improve the capacity of interference network and improve the throughput Limited of wired and wireless networks in traditional methods. The core idea is to compress the interference signal into the small interference space to save more space without interference. The research shows that, in the ideal case, such as global channel information, infinite resolution and bandwidth, high signal intensity and delay, interference alignment can provide the optimal channel freedom. However, in the actual communication process, the application of interference alignment technology still faces many challenges: the complexity of the iterative interference alignment algorithm is high; the interference is the same. It needs a higher signal dimension, and the adaptive interference alignment algorithm is poor in adaptability to the time-varying channel. In this paper, a number of problems existing in the actual system are studied, and the corresponding interference alignment algorithm.1. is proposed for the problem of high complexity of the traditional iterative interference alignment algorithm, and the opportunity interference alignment and its improved algorithm are studied. However, in the actual communication system, the number of users selected is less and the possibility of interference leaks in the system increases, which restricts the performance of the opportunity interference alignment algorithm. In this problem, an improved algorithm for opportunity interference alignment is proposed. Specifically, using the minimum eigenvalue of the interference leakage matrix of each user, the users of the least interference leakage are selected to communicate. At the same time, the base station can select the filter through the Singular Value Decomposition (SVD), combining the channel state information and the information of the user beamforming. In addition, an improved jamming alignment algorithm which can effectively improve the signal to noise ratio is proposed. This algorithm reduces the total interference power.2 of the system by reducing the determined interference power in the system. In view of the problem that the dimension of the signal space is not high and the perfect channel state information is difficult to obtain in the actual system, the blind interference alignment algorithm of K SISO interference channel is studied. The algorithm uses asymmetric complex signal (Asymmetric Complex signaling, AC signaling) to increase the dimension of the signal space, and effectively solves the single antenna approximately. In addition, this paper proves that the system freedom degree of the K user interference channel is K/2, which is also the upper limit of the system freedom degree when the channel state information is known at the transmitter. And the performance of the system is verified by the simulation of the performance of the.3.. And the algorithm has high computational complexity, and an improved interference alignment algorithm is proposed. First, in the relay SISO system, using the design of AC signaling, the dimension of the signal space is added, and the problem of the relay assisted finite channel symbol expansion is effectively solved. The filter of the relay terminal through channel information design receiver is analyzed. The interference alignment and simulation prove that the performance of the undisturbed ideal situation is equal to the user. Secondly, the interference alignment algorithm of the relay MIMO system is studied in the light of the influence and constraints of the number of nodes on the system throughput. The relay ends the interference to minimize or completely eliminate the interference by designing the relay processing matrix properly. The interference alignment with the relay is aligned with the relay. Compared with the algorithm, the complexity of the system is reduced. Finally, in order to improve the capacity loss caused by the half duplex relay, the interference alignment algorithm of two relay alternate forwarding is studied. The algorithm improves the utilization of the time slot effectively, and improves the performance of the system, and the simulation is verified by simulation.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN972
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳麗恒,張業(yè)榮;一種利用信道狀態(tài)信息的維特比譯碼算法[J];無線電通信技術(shù);2005年02期
2 張然然;楊愛敏;劉思楊;劉元安;;不精確信道狀態(tài)信息下的自適應(yīng)調(diào)制算法[J];電子科技大學(xué)學(xué)報(bào);2009年03期
3 鐘斌;張中山;皇甫偉;王軍;隆克平;;基于過時(shí)信道狀態(tài)信息的放大轉(zhuǎn)發(fā)中繼選擇協(xié)議性能分析(英文)[J];中國通信;2013年06期
4 杜娟;康桂霞;;基于部分信道狀態(tài)信息的Tomlinson-Harashima預(yù)編碼設(shè)計(jì)[J];南京郵電大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年05期
5 陳俊杰;司江勃;李贊;石莎;黃海燕;;非理想信道狀態(tài)信息對(duì)頻譜共享認(rèn)知中繼網(wǎng)絡(luò)性能的影響[J];電子與信息學(xué)報(bào);2012年06期
6 李軼鵬;徐尚志;葉中付;;部分信道狀態(tài)信息下多天線系統(tǒng)的最優(yōu)發(fā)送[J];電波科學(xué)學(xué)報(bào);2006年03期
7 謝顯中;邵奇;周志棟;雷維嘉;;非理想信道狀態(tài)信息下的穩(wěn)健干擾安排設(shè)計(jì)[J];北京郵電大學(xué)學(xué)報(bào);2012年03期
8 蘇鋼;朱光喜;劉應(yīng)狀;王德勝;;一種部分信道狀態(tài)信息下提高頻譜效率的方法[J];計(jì)算機(jī)科學(xué);2007年12期
9 韓維稼;陳前斌;唐倫;;基于瞬時(shí)信道狀態(tài)信息的串行多中繼選擇方法[J];計(jì)算機(jī)應(yīng)用研究;2010年06期
10 李小東;;貪婪-注水方案在多用戶傳輸中的分析研究[J];微型機(jī)與應(yīng)用;2014年06期
相關(guān)會(huì)議論文 前1條
1 鐘俊;彭啟琮;;部分信道狀態(tài)信息對(duì)MIMO-OFDM通信系統(tǒng)的影響[A];第九屆全國青年通信學(xué)術(shù)會(huì)議論文集[C];2004年
相關(guān)重要報(bào)紙文章 前1條
1 ;MIMO收發(fā)技術(shù)發(fā)展及應(yīng)用[N];人民郵電;2007年
相關(guān)博士學(xué)位論文 前6條
1 鐘俊;部分信道狀態(tài)信息下的無線下行鏈接設(shè)計(jì)方法[D];電子科技大學(xué);2005年
2 佘鋒;基于信道狀態(tài)信息的MIMO發(fā)射策略優(yōu)化研究[D];上海交通大學(xué);2008年
3 孫君;非理想信道狀態(tài)信息移動(dòng)通信系統(tǒng)的性能研究[D];山東大學(xué);2008年
4 李永杰;基于壓縮感知的信息反饋、檢測(cè)與重建研究[D];南京郵電大學(xué);2012年
5 蘇鋼;TDD系統(tǒng)中部分信道狀態(tài)下廣義高斯理論的應(yīng)用研究[D];華中科技大學(xué);2007年
6 毛峻嶺;新型MIMO系統(tǒng)中的資源分配[D];北京郵電大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 黃波;非理想信道狀態(tài)信息條件下干擾對(duì)齊技術(shù)研究[D];西南交通大學(xué);2013年
2 曹瑞;信道仿真與信道狀態(tài)信息估計(jì)、反饋技術(shù)研究[D];電子科技大學(xué);2008年
3 周其永;數(shù)字電視信道狀態(tài)信息估計(jì)的研究與設(shè)計(jì)[D];電子科技大學(xué);2009年
4 楊育捷;MIMO系統(tǒng)中基于容量分析的天線選擇及信道狀態(tài)信息研究[D];上海師范大學(xué);2009年
5 王萬蕾;基于壓縮感知的MIMO最優(yōu)功率分配性能分析與研究[D];湘潭大學(xué);2013年
6 朱曉雨;LTE/LTE-A終端CSI上報(bào)測(cè)量實(shí)現(xiàn)與驗(yàn)證[D];北京郵電大學(xué);2014年
7 徐晶;面向5G系統(tǒng)基于壓縮感知理論的信道狀態(tài)獲取研究[D];北京郵電大學(xué);2015年
8 孫超;基于壓縮感知的無線信道信息反饋的研究[D];南京郵電大學(xué);2011年
9 黃贏;無線網(wǎng)絡(luò)中干擾對(duì)齊算法研究[D];南京理工大學(xué);2013年
10 鄧晶;協(xié)作多點(diǎn)傳輸與有限反饋技術(shù)研究[D];上海師范大學(xué);2013年
,本文編號(hào):2151812
本文鏈接:http://sikaile.net/kejilunwen/wltx/2151812.html