穩(wěn)健精細(xì)抗差異性頻譜感知技術(shù)研究
[Abstract]:Spectrum sensing technology is the key basic element for the research and development of cognitive dynamic systems. However, with the rapid development of wireless communications, electronic reconnaissance and electronic countermeasures, the types of electronic devices emerge in endlessly, the power levels of various radio signals are more and more different, the more the communication signal system, the detection mode and the interference mode are also. The more and more diversity, the more and more complex space electromagnetic environment, which brings a lot of new needs to be solved and must continue to pay attention to the spectrum sensing technology: 1. robust spectrum sensing in the practical cognitive dynamic system, spectrum sensing technology must have the real-time blind frequency under the extremely low signal to noise ratio and the wireless channel severe fading electromagnetic background. The ability of spectral perception brings great challenge to the robustness of classical spectrum sensing algorithms..2. fine spectrum sensing new generation of wireless communication, monitoring, reconnaissance, and antagonism are more or less moving towards ultra wideband, short-time burst and multi interactive target, and this technology development trend of communication electronics industry is more or less. Cognitive dynamic systems have the ability to have ultra wideband multi-target real-time perception. This is a technical problem for spectral sensing to introduce real time fine analysis in ultra wideband..3. deep spectrum sensing, such as cognitive radar, cognitive electronic countermeasures, cognitive radio, and so on, needs to have the depth of radio signals. The ability to analyze the radio frequency characteristics of any target signal, communication and interference mode, modulation type, waveform forming, wave direction and position and so on, so as to achieve the joint optimization design of the system. However, at present, the technology and equipment of spectrum sensing at home and abroad are very few with the ability of depth perception, which will also be the spectrum. The perceptual technology needs a direction of long-term evolution and progress..4. anti heterosexual cooperative spectrum sensing background noise is composed of ground noise, atmospheric noise, rain noise, artificial noise, interference noise, and the thermal noise of signal detection receiver. The background noise level is often multidimensional in time, location and frequency. In order to make the results of cooperative spectrum sensing more accurate and reliable, the cooperative spectrum sensing technology must have the ability to adapt to the high dynamic changes of the background noise level of the participating cooperation nodes, to counter and weaken the bad results of the nodes themselves to the final cooperation results. The main research results of this paper are as follows: 1. the system model of spectrum sensing is often simply molded into the two element hypothesis, often neglecting the fading channel coefficient, the signal code rate and the interaction between the white noise bandwidth, and the paper. The built system model fully analyzes the correlation between the three, and focuses on the correlation between the samples introduced by the flat slow fading channel, which ensures the accuracy of the system model to meet the robustness requirements of the existing spectrum sensing algorithm. This paper uses the principle of normalized pure transformation from the angle of frequency domain signal processing. A signal detection algorithm based on normalized spectrum is taken into account. According to the asymptotic normality and mutual independence of Fu Liye transform, the algorithm is used to calculate the statistical characteristics of power spectrum, using the intensity of spectral lines in the monitoring band and the ratio of all spectral lines to the intensity of the spectrum. The threshold of the algorithm is only matched with the parameters of the spectrum sensing algorithm. It has nothing to do with the noise variance of the node. It can effectively overcome the influence of the noise uncertainty on the spectrum sensing performance. The fixed signal to noise ratio, the spectrum sensing performance of the algorithm is not affected by the change of noise level. It can be applied to Gauss white noise and flat slow fading channels, and a better spectrum sense can be obtained in a wider range of signal to noise ratio. The existing conventional ultra heterodyne narrowband spectrum sensing technology can not quickly and accurately complete the spectrum sensing of the UWB multiple targets. In this paper, the real-time multi-target parallel spectrum sensing research oriented to discrete frequency band is studied and the multi channel multiphase structure is used to calculate the power spectrum of the ultra wide band.3.. Then the normalized power spectrum of each discrete frequency band is calculated in parallel, and the multiple frequency gaps are detected in the communication bandwidth by cyclic forward and reverse search. In a search cycle, the forward decision is performed first, and the instantaneous power is uneven and the different subband signals are detected. Then the reverse decision is performed to detect positive positive results. The subband signal similar to the comb type signal is missed in the decision, and the parallel spectrum sensing.4. for multiple targets in the band is completed for the differences in the parameters of the participating nodes. In this paper, a more universal cooperative spectrum sensing algorithm is designed. The algorithm overcomes the local normalized spectrum uploading center and overcoming each node. The dynamic changes of noise level in time domain, space and frequency domain are accumulated, and then the test statistics are calculated with equal gain average or optimal weighted average in the fusion center, which can effectively eliminate the influence of high dynamic background noise on the spectrum sensing performance of the signal.5. design and hardware implementation of the spectrum sensor nodes. After completing the networking of the spectrum sensor, a high precision synchronous data acquisition method is designed. Finally, the single point and the cooperative perception measurement performance of the normalized spectral spectrum sensing algorithm and the energy spectrum sensing algorithm are compared.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN925
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉婷婷;王建新;束鋒;;合作頻譜感知吞吐量和感知時間關(guān)系的研究[J];現(xiàn)代雷達(dá);2009年05期
2 常帥;孔凡軍;陳娟;鄭學(xué)強;;協(xié)同頻譜感知中的認(rèn)知用戶數(shù)優(yōu)化[J];軍事通信技術(shù);2010年03期
3 汪一鳴;周劉蕾;;基于追蹤定位的認(rèn)知頻譜感知解決方案[J];通信學(xué)報;2010年11期
4 岳文靜;鄭寶玉;孟慶民;崔景伍;解培中;;衰落信道下提高協(xié)作頻譜感知能力的方法[J];中國科學(xué):信息科學(xué);2011年02期
5 韓勇;陳強;王建新;;合作頻譜感知安全技術(shù)研究[J];通信技術(shù);2011年06期
6 韓勇;王放;陳強;王建新;;一種信任度模糊分配的合作頻譜感知算法[J];信號處理;2011年06期
7 蔣金波;王可人;陳小波;金虎;;頻譜切換中基于頻譜感知的鏈路保持概率[J];探測與控制學(xué)報;2011年06期
8 劉穎;楊震;;協(xié)作頻譜感知系統(tǒng)中的結(jié)盟技術(shù)研究[J];南京郵電大學(xué)學(xué)報(自然科學(xué)版);2012年05期
9 秦臻;薛峰;梁繼民;;最大系統(tǒng)效用合作頻譜感知優(yōu)化算法[J];信號處理;2013年02期
10 江曉林;顧學(xué)邁;何晨;;基于壓縮感知的聯(lián)合協(xié)作頻譜感知算法[J];上海交通大學(xué)學(xué)報;2013年07期
相關(guān)會議論文 前10條
1 岳文靜;鄭寶玉;;一種基于信道可靠性的協(xié)作頻譜感知算法[A];2009年通信理論與信號處理學(xué)術(shù)年會論文集[C];2009年
2 張培;孟慶民;朱衛(wèi)平;;一種可以減少感知時間的頻譜感知方法[A];2010年通信理論與信號處理學(xué)術(shù)年會論文集[C];2010年
3 郝博雅;周輝;孫斌;;基于權(quán)值的合作頻譜感知算法[A];第六屆全國信號和智能信息處理與應(yīng)用學(xué)術(shù)會議論文集[C];2012年
4 吳昊;趙杭生;;基于三階累積量的頻譜感知技術(shù)研究[A];2009年全國無線電應(yīng)用與管理學(xué)術(shù)會議論文集[C];2009年
5 張冰玉;鄭寶玉;岳文靜;;一種基于串行網(wǎng)絡(luò)的協(xié)作頻譜感知方案[A];2010年通信理論與信號處理學(xué)術(shù)年會論文集[C];2010年
6 馮子木;漆春梅;王軍;李樂民;;協(xié)同頻譜感知算法綜述[A];2008年中國西部青年通信學(xué)術(shù)會議論文集[C];2008年
7 王翊;胡艷軍;唐希雯;;一種改進(jìn)的基于多閾值的協(xié)作頻譜感知方法[A];2011年通信與信息技術(shù)新進(jìn)展——第八屆中國通信學(xué)會學(xué)術(shù)年會論文集[C];2011年
8 鄭仕鏈;何斌;楊偉程;;認(rèn)知無線電寬帶頻譜感知試驗研究[A];浙江省信號處理學(xué)會2011學(xué)術(shù)年會論文集[C];2011年
9 李佳俊;黃清;孔勇;;基于小波變換的認(rèn)知無線電寬帶頻譜感知方法[A];中國電子學(xué)會第十六屆信息論學(xué)術(shù)年會論文集[C];2009年
10 楊家勝;劉光斌;程俊仁;;基于壓縮采樣技術(shù)的認(rèn)知無線電寬帶頻譜感知方法[A];中國通信學(xué)會第六屆學(xué)術(shù)年會論文集(上)[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 肖淑艷;認(rèn)知無線電中頻譜感知及資源優(yōu)化分配的研究[D];中國礦業(yè)大學(xué);2015年
2 卿浩博;面向無線通信系統(tǒng)的頻譜感知理論與技術(shù)研究[D];北京郵電大學(xué);2015年
3 楊雪洲;認(rèn)知中繼網(wǎng)絡(luò)頻譜感知與資源分配研究[D];電子科技大學(xué);2014年
4 齊佩漢;穩(wěn)健精細(xì)抗差異性頻譜感知技術(shù)研究[D];西安電子科技大學(xué);2014年
5 喬曉瑜;基于頻譜感知的動態(tài)頻譜管理研究[D];北京交通大學(xué);2013年
6 李含青;基于壓縮感知的寬帶頻譜感知技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2014年
7 歐揚;選擇性協(xié)同頻譜感知技術(shù)研究[D];蘇州大學(xué);2014年
8 劉思楊;下一代無線通信系統(tǒng)中高效傳輸及頻譜感知關(guān)鍵技術(shù)的研究[D];北京郵電大學(xué);2009年
9 王悅;認(rèn)知無線電寬帶頻譜感知技術(shù)研究[D];北京郵電大學(xué);2011年
10 黃俊園;認(rèn)知無線網(wǎng)絡(luò)序貫頻譜感知研究[D];武漢大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 王艷君;認(rèn)知無線網(wǎng)絡(luò)中基于多節(jié)點的協(xié)作頻譜感知技術(shù)的研究[D];昆明理工大學(xué);2015年
2 谷凱;基于GNU Radio的動態(tài)頻譜感知及數(shù)據(jù)傳輸[D];海南大學(xué);2015年
3 孟晨;基于稀疏組套索的寬頻帶頻譜感知研究[D];燕山大學(xué);2015年
4 魏亮;認(rèn)知車載網(wǎng)中頻譜感知算法仿真研究[D];西南交通大學(xué);2015年
5 周瑞;基于信任度的認(rèn)知無線電聯(lián)合頻譜感知研究[D];湖南工業(yè)大學(xué);2015年
6 錢陸;基于數(shù)據(jù)并發(fā)傳輸?shù)念l譜感知系統(tǒng)的研究[D];北京郵電大學(xué);2014年
7 羅曼;認(rèn)知無線電協(xié)作頻譜感知技術(shù)的研究[D];哈爾濱工業(yè)大學(xué);2015年
8 李然;基于隨機矩陣?yán)碚摰念l譜感知算法研究[D];哈爾濱工業(yè)大學(xué);2015年
9 張蔚;基于動態(tài)壓縮采樣的寬帶頻譜感知技術(shù)[D];哈爾濱工業(yè)大學(xué);2015年
10 宋雙;基于序貫檢測的認(rèn)知無線電協(xié)作頻譜感知算法研究[D];哈爾濱工業(yè)大學(xué);2015年
,本文編號:2150552
本文鏈接:http://sikaile.net/kejilunwen/wltx/2150552.html