機動目標(biāo)DOA跟蹤粒子濾波算法
發(fā)布時間:2018-07-21 10:07
【摘要】:針對標(biāo)準粒子濾波算法在機動目標(biāo)波達方向(direction of arrival,DOA)隨時間快速變化導(dǎo)致跟蹤精度下降、實時性變差及多目標(biāo)跟蹤誤差大等不足的問題,本文提出了一種改進粒子濾波(particle filter,PF)算法。該算法依據(jù)陣列信號處理模型和勻速(constant velocity,CV)模型,建立了機動目標(biāo)跟蹤的狀態(tài)方程和觀測方程作為狀態(tài)空間模型,并在此基礎(chǔ)上,借鑒多重信號分類(multiple signal classification,MUSIC)算法譜函數(shù)修改了粒子濾波的似然函數(shù),實現(xiàn)了對目標(biāo)方位的實時動態(tài)跟蹤。仿真結(jié)果表明,與傳統(tǒng)子空間類跟蹤算法和標(biāo)準粒子濾波算法相比,本文方法跟蹤精度更高,收斂速度更快,抗噪能力及魯棒性更強,對軌跡交叉的多目標(biāo)跟蹤性能也更優(yōu)。
[Abstract]:In this paper, an improved particle filter (particle filter) algorithm is proposed to solve the problem that the fast change of the standard particle filter algorithm in the direction of arrival of maneuvering targets leads to the decrease of tracking accuracy, the real time variation and the large tracking error of multiple targets. In this paper, an improved particle filter (particle filter) algorithm is proposed. Based on array signal processing model and constant velocity CV model, the state equation and observation equation of maneuvering target tracking are established as state space model. The likelihood function of particle filter is modified by using the spectral function of (multiple signal classification music algorithm, and the real-time dynamic tracking of target azimuth is realized. The simulation results show that compared with the traditional subspace tracking algorithm and the standard particle filter algorithm, this method has higher tracking accuracy, faster convergence speed, stronger anti-noise ability and better robustness, and better performance for multi-target tracking with track crossing.
【作者單位】: 哈爾濱工程大學(xué)水聲技術(shù)重點實驗室;哈爾濱工程大學(xué)水聲工程學(xué)院;解放軍92985部隊;
【基金】:國家自然科學(xué)基金項目(51279043);國家自然科學(xué)基金項目(61201411);國家自然科學(xué)基金項目(51209059) 國家“863”計劃資助項目(2013AA09A503) 黑龍江省普通高校青年學(xué)術(shù)骨干支持計劃(1253G019)
【分類號】:TN911.23
[Abstract]:In this paper, an improved particle filter (particle filter) algorithm is proposed to solve the problem that the fast change of the standard particle filter algorithm in the direction of arrival of maneuvering targets leads to the decrease of tracking accuracy, the real time variation and the large tracking error of multiple targets. In this paper, an improved particle filter (particle filter) algorithm is proposed. Based on array signal processing model and constant velocity CV model, the state equation and observation equation of maneuvering target tracking are established as state space model. The likelihood function of particle filter is modified by using the spectral function of (multiple signal classification music algorithm, and the real-time dynamic tracking of target azimuth is realized. The simulation results show that compared with the traditional subspace tracking algorithm and the standard particle filter algorithm, this method has higher tracking accuracy, faster convergence speed, stronger anti-noise ability and better robustness, and better performance for multi-target tracking with track crossing.
【作者單位】: 哈爾濱工程大學(xué)水聲技術(shù)重點實驗室;哈爾濱工程大學(xué)水聲工程學(xué)院;解放軍92985部隊;
【基金】:國家自然科學(xué)基金項目(51279043);國家自然科學(xué)基金項目(61201411);國家自然科學(xué)基金項目(51209059) 國家“863”計劃資助項目(2013AA09A503) 黑龍江省普通高校青年學(xué)術(shù)骨干支持計劃(1253G019)
【分類號】:TN911.23
【相似文獻】
相關(guān)期刊論文 前10條
1 夏佩倫;;潛艇對機動目標(biāo)跟蹤和攻擊若干問題的探討[J];火力與指揮控制;2010年02期
2 徐洪奎,王東進;基于卡爾曼濾波的組網(wǎng)雷達系統(tǒng)目標(biāo)跟蹤分析[J];系統(tǒng)工程與電子技術(shù);2001年11期
3 陳玲,李少洪;基于無源時差定位系統(tǒng)的機動目標(biāo)跟蹤算法[J];系統(tǒng)工程與電子技術(shù);2005年01期
4 夏艷林;梁雁冰;;電視與紅外傳感器對機動目標(biāo)的分布式航跡融合[J];微計算機信息;2006年10期
5 周云鋒;單甘霖;梅衛(wèi);;空中機動目標(biāo)剛體運動建模方法[J];火力與指揮控制;2009年11期
6 張群,馬長征,張守宏;機動目標(biāo)三維成象中調(diào)頻信號超分辨方法[J];應(yīng)用科學(xué)學(xué)報;2000年02期
7 袁俊泉,皇甫堪;機動目標(biāo)情況下FFT比相測距方法研究[J];現(xiàn)代雷達;2005年09期
8 王勇;姜義成;;兩種線性時頻分布在機動目標(biāo)ISAR成像中的應(yīng)用[J];哈爾濱工業(yè)大學(xué)學(xué)報;2006年05期
9 崔t熈,
本文編號:2135175
本文鏈接:http://sikaile.net/kejilunwen/wltx/2135175.html
最近更新
教材專著