面向抗噪語音識別的SVM關(guān)鍵問題研究
[Abstract]:Speech recognition is an important technology of human-computer interaction and pattern recognition, which has a broad application prospect. The research on speech recognition has important theoretical significance and practical value. At present, most speech recognition systems are only suitable for the recognition of "pure" speech. When there is noise or different training and testing environments, the performance of the recognition system will decline sharply, and the performance of the system needs to be improved. However, common speech recognition methods are difficult to achieve good results. As a new pattern recognition method, support vector machine (SVM) is based on structural risk minimization principle and VC dimension theory. The classification problems such as nonlinear and local optimal solutions are suitable for speech signal characteristics and have been applied to speech recognition. This paper focuses on how to improve the comprehensive performance of speech recognition system based on support vector machine. It selects the multi-class classification method of anti-noise speech recognition system, and selects and constructs the kernel function of support vector machine. From the point of view of accelerating the training speed of speech recognition system, the application of support vector machine in speech recognition system is analyzed and studied. The main research results can be summarized as follows: (1) the theoretical basis and basic principle of support vector machine are studied in detail, and the robustness of support vector machine algorithm is analyzed theoretically. Therefore, the support vector machine is selected as the recognition method in this paper, and the speech recognition system based on support vector machine is constructed, and the basic principle, general process, model training and pattern matching of speech recognition are analyzed in detail. The design and recording process of speech database are studied, and the Chinese 500 word speech database is established. (2) in order to improve the noise resistance of speech recognition system, this paper deeply studies the strategy of support vector machine (SVM) to solve the multi-class classification problem. The principle of M-ary and error-correcting output coding in communication system is introduced into the speech recognition of support vector machine for the first time. The simulation results show that in pure and noisy speech environment, the error correction output coding method has good robustness. (3) Kernel function is very important for support vector machine, which directly determines the final performance of support vector machine. Therefore, the selection and construction of kernel function occupy an important position in the theoretical research of support vector machine. In this paper, two new kernel functions, namely: Logistic and ORF kernel functions, are proposed. It is proved that they are Mercer kernel functions respectively. The new kernel functions are proved to be effective by the experiments of the double helix test problem, Vowel and TiDigits, of isolated word phonetic corpus, and the results show that the new kernel function is a Mercer kernel function. Application in speech recognition has good generalization performance and anti-noise ability. (4) in order to improve the real-time performance of speech recognition system, the training speed of standard support vector machine is accelerated. Considering the local similarity of speech samples and the weak correlation between non-adjacent samples, an improved local support vector machine (LSVM) algorithm model is proposed, and the description of the improved algorithm is given. Local kernel function proof and concrete flow, through the experiments of Vowelen CASIA Chinese digital string ISOLET and Chinese 500-word phonetic corpus, it is verified that the improved local support vector machine algorithm can effectively shorten the training time of speech recognition system in the aspect of speech recognition.
【學位授予單位】:太原理工大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN912.34;TP181
【參考文獻】
相關(guān)期刊論文 前10條
1 肖志博;王煥鋼;肖英超;徐文立;;面向大規(guī)模數(shù)據(jù)集的單類支持向量機[J];東南大學學報(自然科學版);2013年S1期
2 努爾麥麥提·尤魯瓦斯;吾守爾·斯拉木;;面向大詞匯量的維吾爾語連續(xù)語音識別研究[J];計算機工程與應(yīng)用;2013年09期
3 朱瑩瑩;尹傳環(huán);牟少敏;;一種改進的局部支持向量機算法[J];計算機工程與科學;2013年02期
4 王磊;屈衛(wèi)東;;應(yīng)用PCA-SVM對伺服閥進行故障診斷[J];自動化儀表;2013年01期
5 秦春香;黃浩;;發(fā)音特征在維漢語音識別中的應(yīng)用[J];計算機工程;2012年23期
6 武曉敏;達瓦·伊德木草;吾守爾·斯拉木;;自然語料缺乏的民族語言連續(xù)語音識別[J];計算機工程;2012年12期
7 李冠宇;孟猛;;藏語拉薩話大詞表連續(xù)語音識別聲學模型研究[J];計算機工程;2012年05期
8 徐子豪;張騰飛;;基于語音識別和無線傳感網(wǎng)絡(luò)的智能家居系統(tǒng)設(shè)計[J];計算機測量與控制;2012年01期
9 尹傳環(huán);牟少敏;田盛豐;黃厚寬;朱瑩瑩;;局部支持向量機的研究進展[J];計算機科學;2012年01期
10 徐星;李元香;吳昱;金彤;;基于粒子群優(yōu)化算法的Logistic模型參數(shù)估計[J];電子學報;2010年S1期
相關(guān)會議論文 前1條
1 蘇毅;吳文虎;鄭方;方棣棠;;基于支持向量機的語音識別研究[A];第六屆全國人機語音通訊學術(shù)會議(NCMMSC6)論文集[C];2001年
相關(guān)博士學位論文 前10條
1 呂釗;噪聲環(huán)境下的語音識別算法研究[D];安徽大學;2011年
2 梁錦錦;支持向量機和支持向量域描述的若干問題研究[D];西安電子科技大學;2009年
3 杜俊;自動語音識別中的噪聲魯棒性方法[D];中國科學技術(shù)大學;2009年
4 吳斌;語音識別中的后處理技術(shù)研究[D];北京郵電大學;2008年
5 彭新俊;支持向量機若干問題及應(yīng)用研究[D];上海大學;2008年
6 龍潛;噪聲環(huán)境下的語音識別技術(shù)研究[D];中國科學技術(shù)大學;2007年
7 董婧;魯棒語音識別技術(shù)的研究[D];吉林大學;2007年
8 寧更新;抗噪聲語音識別新技術(shù)的研究[D];華南理工大學;2006年
9 吳濤;核函數(shù)的性質(zhì)、方法及其在障礙檢測中的應(yīng)用[D];中國人民解放軍國防科學技術(shù)大學;2003年
10 夏建濤;基于機器學習的高維多光譜數(shù)據(jù)分類[D];西北工業(yè)大學;2002年
相關(guān)碩士學位論文 前9條
1 賀元元;支持向量機樣本預(yù)選取技術(shù)在語音識別中的應(yīng)用研究[D];太原理工大學;2012年
2 段繼康;多類分類支持向量機在語音識別中的應(yīng)用研究[D];太原理工大學;2010年
3 魏春明;語音變化分析及其在孤立詞識別中的應(yīng)用[D];浙江大學;2010年
4 童紅;孤立詞語音識別系統(tǒng)的技術(shù)研究[D];江蘇大學;2009年
5 郭月玲;支持向量機在語音識別中的應(yīng)用研究[D];太原理工大學;2009年
6 陳程;機載環(huán)境下的語音識別技術(shù)及實現(xiàn)[D];電子科技大學;2008年
7 崔毓菁;語音識別系統(tǒng)速度優(yōu)化算法研究[D];北京郵電大學;2008年
8 王一平;用遺傳算法改進HMM的語音識別算法研究[D];太原理工大學;2007年
9 羅迪君;基于核方法的糾錯輸出編碼多類分類算法改進[D];浙江大學;2006年
,本文編號:2131564
本文鏈接:http://sikaile.net/kejilunwen/wltx/2131564.html