基于盲源分離的腦電信號(hào)分析技術(shù)研究
[Abstract]:EEG signals contain a wealth of information and are often used in engineering brain-computer interfaces and clinical disease diagnosis. Whether the EEG signal can be well analyzed and the information extracted accurately and quickly determines the performance of EEG signal in the process of application. After studying the methods of EEG analysis at home and abroad, this paper uses the blind source separation algorithm, which is widely used in the field of signal processing in recent years, to take the P300 EEG signal and the motion imaginary EEG signal as the objects, respectively. The intensity of P300 EEG signal is very weak, which is easily disturbed by environment, eye movement artifacts, ECG, EMG and spontaneous EEG signals, and is submerged in the collection of EEG signals. In order to separate P300 EEG signal from all kinds of interference quickly and efficiently, by analyzing the characteristics of P300 time domain, frequency domain and scalp space domain, this paper proposes an algorithm combining coherent averaging, wavelet transform and blind source separation. The P300 EEG signals were extracted from time-frequency domain and scalp spatial domain. A method for automatically selecting P300 corresponding components from the estimated components of multiple sources obtained by blind source separation is proposed. The performance of three blind source separation algorithms, Informax-FastICA and AMUSE, in the process of P300 EEG signal extraction is compared and analyzed. Experiments show that the performance of P300 EEG signal extraction method based on blind source separation is significantly improved compared with that of extracting P300 EEG signal from time and frequency domain only. In order to solve the problem of how to extract the features of motion imagination EEG accurately and effectively, this paper proposes wavelet transform as the preprocessing method by analyzing the features of motion imaginary EEG in time domain, frequency domain and scalp space domain. The second order blind identification (SOBI) algorithm and the information theory feature extraction (ITFE) algorithm are used to extract the motion imaginary EEG signals from the time domain, frequency domain and scalp spatial domain, with energy as the feature. Experiments show that the feature extraction method based on blind source separation has some advantages, and the spatial filter based on SOBI and ITFE can reflect more real brain source activity.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李舜酩,楊濤;盲源信號(hào)分離及其發(fā)展[J];傳感器技術(shù);2005年04期
2 李竇哲;喬曉艷;董有爾;;基于參數(shù)模型和FastICA算法的P300特征實(shí)時(shí)提取[J];測(cè)試技術(shù)學(xué)報(bào);2009年06期
3 常曉剛;陳志華;鄒颯楓;趙力;;基于因子分析的心算事件相關(guān)腦電變化[J];大連交通大學(xué)學(xué)報(bào);2009年04期
4 趙麗;郭旭宏;;基于運(yùn)動(dòng)想象的腦電信號(hào)功率譜估計(jì)[J];電子測(cè)量技術(shù);2012年06期
5 李明愛(ài);崔燕;楊金福;;腦電信號(hào)中眼電偽跡自動(dòng)去除方法的研究[J];電子學(xué)報(bào);2013年06期
6 董潔;王濤;張愛(ài)桃;;基于獨(dú)立分量分析去除腦電中眨眼和水平掃視的偽跡[J];航天醫(yī)學(xué)與醫(yī)學(xué)工程;2011年02期
7 艾玲梅;李營(yíng);馬苗;;基于EMD和PCA的P300分類算法[J];計(jì)算機(jī)工程;2010年05期
8 潘映輻;誘發(fā)電位的基礎(chǔ)知識(shí)及其進(jìn)展[J];臨床腦電學(xué)雜志;2000年01期
9 李曉歐,張笑微,馮煥清;基于維納濾波和快速獨(dú)立分量分析的P300提取方法[J];數(shù)據(jù)采集與處理;2004年03期
10 白冬梅;邱天爽;李小兵;;樣本熵及在腦電癲癇檢測(cè)中的應(yīng)用[J];生物醫(yī)學(xué)工程學(xué)雜志;2007年01期
本文編號(hào):2129109
本文鏈接:http://sikaile.net/kejilunwen/wltx/2129109.html