基于SVD的改進(jìn)抗差UKF算法及在組合導(dǎo)航中的應(yīng)用
發(fā)布時(shí)間:2018-07-13 22:00
【摘要】:針對(duì)GPS/INS組合導(dǎo)航中因觀測(cè)異常導(dǎo)致系統(tǒng)狀態(tài)先驗(yàn)信息矩陣失去對(duì)稱正定性,及傳統(tǒng)等價(jià)權(quán)函數(shù)抗差算法易遇到病態(tài)矩陣,引起濾波性能下降的問題,提出一種基于奇異值分解的改進(jìn)抗差UKF算法.該算法克服了先驗(yàn)協(xié)方差矩陣負(fù)定性變化,通過判斷矩陣病態(tài)性實(shí)現(xiàn)智能選取抗差策略.最后利用車載實(shí)測(cè)數(shù)據(jù)進(jìn)行驗(yàn)證,所得結(jié)果表明,SVD-UKF導(dǎo)航解精度稍優(yōu)于EKF算法,改進(jìn)的抗差策略能夠極大減弱單獨(dú)、連續(xù)以及混合的觀測(cè)異常對(duì)導(dǎo)航解的影響,提高了導(dǎo)航解精度和可靠性.
[Abstract]:In view of the loss of symmetric positive definiteness of system state priori information matrix due to abnormal observation in GPS / ins integrated navigation system, the traditional equivalent weight function robust algorithm is prone to encounter ill-conditioned matrix, which leads to the degradation of filtering performance. An improved robust UKF algorithm based on singular value decomposition (SVD) is proposed. The algorithm overcomes the negative qualitative change of the priori covariance matrix and intelligently selects the robust strategy through the ill-condition of the judgment matrix. Finally, the experimental data are used to verify that the accuracy of SVD-UKF navigation solution is slightly better than that of EKF algorithm, and the improved robust strategy can greatly reduce the influence of single, continuous and mixed observation anomalies on the navigation solution. The accuracy and reliability of navigation solution are improved.
【作者單位】: 中國礦業(yè)大學(xué)國土環(huán)境與災(zāi)害監(jiān)測(cè)國家測(cè)繪局重點(diǎn)實(shí)驗(yàn)室;中國礦業(yè)大學(xué)環(huán)境與測(cè)繪學(xué)院;
【基金】:新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(NCET-13-1019) 江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(SZBF 2011-6-B35) 江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(CXLX13 944)
【分類號(hào)】:TN96.2
[Abstract]:In view of the loss of symmetric positive definiteness of system state priori information matrix due to abnormal observation in GPS / ins integrated navigation system, the traditional equivalent weight function robust algorithm is prone to encounter ill-conditioned matrix, which leads to the degradation of filtering performance. An improved robust UKF algorithm based on singular value decomposition (SVD) is proposed. The algorithm overcomes the negative qualitative change of the priori covariance matrix and intelligently selects the robust strategy through the ill-condition of the judgment matrix. Finally, the experimental data are used to verify that the accuracy of SVD-UKF navigation solution is slightly better than that of EKF algorithm, and the improved robust strategy can greatly reduce the influence of single, continuous and mixed observation anomalies on the navigation solution. The accuracy and reliability of navigation solution are improved.
【作者單位】: 中國礦業(yè)大學(xué)國土環(huán)境與災(zāi)害監(jiān)測(cè)國家測(cè)繪局重點(diǎn)實(shí)驗(yàn)室;中國礦業(yè)大學(xué)環(huán)境與測(cè)繪學(xué)院;
【基金】:新世紀(jì)優(yōu)秀人才支持計(jì)劃項(xiàng)目(NCET-13-1019) 江蘇省高校優(yōu)勢(shì)學(xué)科建設(shè)工程項(xiàng)目(SZBF 2011-6-B35) 江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(CXLX13 944)
【分類號(hào)】:TN96.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 趙大志;唐海云;鐘蘇川;羅懋康;;基于UKF的反輻射導(dǎo)彈對(duì)移動(dòng)輻射源的跟蹤[J];信息與電子工程;2009年05期
2 徐t,
本文編號(hào):2120876
本文鏈接:http://sikaile.net/kejilunwen/wltx/2120876.html
最近更新
教材專著