基于接收信號強(qiáng)度的WSN優(yōu)化定位算法研究
發(fā)布時間:2018-07-03 13:43
本文選題:接收信號強(qiáng)度 + 模型參數(shù); 參考:《華中科技大學(xué)》2014年碩士論文
【摘要】:無線傳感器網(wǎng)絡(luò)中節(jié)點(diǎn)的部署環(huán)境通常比較復(fù)雜,導(dǎo)致節(jié)點(diǎn)間的通信模型無法預(yù)測,不同時刻節(jié)點(diǎn)間信號的傳輸方式存在很大的差異。正是傳感器網(wǎng)絡(luò)在實(shí)際環(huán)境中的這些動態(tài)性變化,以及季節(jié),溫度等對節(jié)點(diǎn)的影響,因此,需要提出一種對環(huán)境自適應(yīng)求解模型參數(shù)的算法。僅僅通過環(huán)境中的實(shí)驗數(shù)據(jù)或者經(jīng)驗?zāi)P蛠淼玫侥P蛥?shù)都是不準(zhǔn)確的,本文旨在將當(dāng)前環(huán)境下的實(shí)測數(shù)據(jù)特征和經(jīng)驗?zāi)P徒Y(jié)合,設(shè)計參數(shù)自適應(yīng)算法。同時,針對復(fù)雜環(huán)境中存在不可忽視的非視距誤差,通過濾波器對接收信號強(qiáng)度值進(jìn)行濾波。最后,基于參數(shù)自適應(yīng)和非視距誤差抑制模型設(shè)計一種適用于復(fù)雜環(huán)境的高精度定位算法。 本文首先搭建了多組基于Mica2平臺的實(shí)驗,包括視距傳播實(shí)驗、單方向傳播實(shí)驗等,通過實(shí)驗數(shù)據(jù)研究節(jié)點(diǎn)接收信號強(qiáng)度值的傳播特性,同時分析對無線傳播模型參數(shù)造成的影響。在對比現(xiàn)有傳播模型參數(shù)求解的方法基礎(chǔ)上,設(shè)計一種自適應(yīng)求解模型參數(shù)的算法。將當(dāng)前環(huán)境下的實(shí)測數(shù)據(jù)特征和經(jīng)驗?zāi)P拖嘟Y(jié)合,保證模型參數(shù)更能適應(yīng)環(huán)境的動態(tài)性變化。同時,針對復(fù)雜環(huán)境中非視距路徑存在,導(dǎo)致節(jié)點(diǎn)間的測量值存在較大的非視距誤差問題,比較現(xiàn)有非視距誤差判定的方法,分析優(yōu)缺點(diǎn)在此基礎(chǔ)上進(jìn)行改進(jìn),使之更適應(yīng)于實(shí)際環(huán)境。并且設(shè)計有偏卡爾曼濾波器對非視距誤差進(jìn)行抑制,減小節(jié)點(diǎn)間的測距誤差。最后,將粒子群優(yōu)化算法與基于估計距離的加權(quán)質(zhì)心算法結(jié)合,在對數(shù)-正態(tài)模型下進(jìn)行定位效果仿真,,同時結(jié)合實(shí)際實(shí)驗數(shù)據(jù)對算法進(jìn)行定位性能分析,通過實(shí)驗驗證了該算法在復(fù)雜環(huán)境下得到了較好的定位效果。
[Abstract]:The deployment environment of nodes in wireless sensor networks is usually complex, which leads to the unpredictable communication model between nodes, and there are great differences in the transmission modes between nodes at different times. It is precisely the dynamic changes of sensor networks in the real environment and the effects of seasons and temperatures on the nodes. Therefore, an adaptive algorithm to solve the model parameters is proposed. It is not accurate to get the model parameters only from the experimental data or the empirical model in the environment. This paper aims to combine the characteristics of the measured data in the current environment with the empirical model to design an adaptive parameter algorithm. At the same time, the received signal strength is filtered by filter in view of the non-line-of-sight error which can not be ignored in complex environment. Finally, based on parametric adaptive and non-line-of-sight error suppression model, a high precision localization algorithm is designed for complex environment. In this paper, we first set up several experiments based on Mica2 platform, including line-of-sight propagation experiment, single-direction propagation experiment, etc. Through the experimental data, we studied the propagation characteristics of the received signal intensity value. At the same time, the influence on the parameters of wireless propagation model is analyzed. On the basis of comparing the existing methods to solve the parameters of the propagation model, an adaptive algorithm for solving the parameters of the model is designed. The characteristics of measured data and the empirical model are combined to ensure that the parameters of the model are more adaptable to the dynamic changes of the environment. At the same time, in view of the non-line-of-sight path existing in complex environment, which leads to the larger non-line-of-sight error problem between nodes, this paper compares the existing non-line-of-sight error determination methods, and analyzes the advantages and disadvantages of the improved method. Make it more suitable for the actual environment. A biased Kalman filter is designed to reduce the range error between nodes. Finally, the particle swarm optimization algorithm is combined with the weighted centroid algorithm based on the estimated distance, and the localization effect is simulated in logarithmic normal model. At the same time, the localization performance of the algorithm is analyzed based on the actual experimental data. The experimental results show that the algorithm has better localization effect in complex environment.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN929.5;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 郝鳳琦;;無線傳感器網(wǎng)絡(luò)應(yīng)用進(jìn)展[J];電子元件與材料;2013年12期
2 ;博通GPS解決方案支持GLONASS衛(wèi)星系統(tǒng)[J];數(shù)字通信世界;2011年S1期
3 黃河;石為人;許磊;王小剛;;自適應(yīng)無線傳感器網(wǎng)絡(luò)室內(nèi)RSSI估計[J];華中科技大學(xué)學(xué)報(自然科學(xué)版);2010年08期
4 李軍;張會清;;一種室內(nèi)定位中NLOS誤差抑制算法[J];控制工程;2009年S2期
相關(guān)博士學(xué)位論文 前2條
1 吳光;無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位技術(shù)的理論和實(shí)驗研究[D];華中科技大學(xué);2013年
2 高芳;智能粒子群優(yōu)化算法研究[D];哈爾濱工業(yè)大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 趙飛;基于RSSI的無線傳感器網(wǎng)絡(luò)定位算法研究[D];南京郵電大學(xué);2011年
本文編號:2093850
本文鏈接:http://sikaile.net/kejilunwen/wltx/2093850.html
最近更新
教材專著