FRFT在正交多載波水聲通信系統(tǒng)中的應(yīng)用研究
本文選題:水聲通信 + 正交頻分復(fù)用。 參考:《集美大學(xué)》2015年碩士論文
【摘要】:實(shí)現(xiàn)水下信息傳輸與探測(cè)的主要手段是水聲通信。水下唯一可以進(jìn)行遠(yuǎn)距離信息傳輸?shù)奈锢砻劫|(zhì)是水聲信道,不同于無線電信道,水聲信道是一個(gè)十分復(fù)雜的時(shí)空頻變信道,它的主要特征是多變、帶寬有限以及多途效應(yīng),因此,水聲通信技術(shù)發(fā)展緩慢。正交頻分復(fù)用(Orthogonal Frequency Division Multiplexing,OFDM)由于傳輸速率高、抗多徑能力強(qiáng)、頻譜利用率高等優(yōu)點(diǎn)而在高速無線電通信中得到廣泛應(yīng)用。但將其應(yīng)用于水聲通信系統(tǒng)中,OFDM會(huì)受到水聲信道的窄頻帶寬和梳狀的幅頻響應(yīng)特性的影響,不僅沒發(fā)揮其優(yōu)勢(shì),反而對(duì)頻偏和相位噪聲非常敏感,使得OFDM的同步問題異常突出。針對(duì)這些問題,本文提出了采用對(duì)稱三角線性調(diào)頻(Symmetrical Triangular Linear Frequency Modulation,STLFM)信號(hào)作為同步碼,基于分?jǐn)?shù)階Fourier變換(Fractional Fourier Transform,FRFT)的正交多載波水聲通信系統(tǒng)的同步檢測(cè)整體方案。通過對(duì)STLFM信號(hào)在分?jǐn)?shù)階傅里葉域能量匯聚性的分析發(fā)現(xiàn),一個(gè)周期的STLFM信號(hào)分別在1p階、2p階處作FRFT,各能產(chǎn)生一次能量尖峰,這大大提高了目標(biāo)分辨率,為實(shí)現(xiàn)同步提供了良好的條件。然后對(duì)STLFM信號(hào)作為同步碼的系統(tǒng)模型進(jìn)行了研究,推導(dǎo)了以STLFM信號(hào)作為同步碼的聯(lián)合同步算法,以及估計(jì)1p階和2p階處的采樣頻差s?f、載波頻差c?f和符號(hào)定時(shí)0k算法。為了驗(yàn)證算法的正確性,對(duì)基于FRFT-OFDM水聲通信系統(tǒng)進(jìn)行了仿真實(shí)驗(yàn)和性能分析,以同步誤碼率(Bit Error Rate,BER)作為評(píng)價(jià)指標(biāo),在有噪聲、多徑傳輸和多普勒效應(yīng)三種環(huán)境組合場(chǎng)景下與傳統(tǒng)OFDM系統(tǒng)采用線性調(diào)頻(Linear Frequency Modulation,LFM)信號(hào)作為同步碼進(jìn)行分析比較;并通過水池實(shí)驗(yàn)驗(yàn)證了基于FRFT-OFDM水聲通信方案的有效性和可行性,具有一定的應(yīng)用價(jià)值。
[Abstract]:Underwater acoustic communication is the main means of underwater information transmission and detection. The only physical medium that can transmit long-distance information under water is the underwater acoustic channel, which is different from the radio channel. The underwater acoustic channel is a very complex spatio-temporal and frequency-varying channel, which is characterized by variability, limited bandwidth and multipath effect. Therefore, the development of underwater acoustic communication technology is slow. Orthogonal Frequency Division Multiplexing OFDM (OFDM) is widely used in high-speed radio communication due to its high transmission rate, strong anti-multipath ability and high spectral efficiency. However, the application of OFDM in underwater acoustic communication system will be influenced by the narrow bandwidth of underwater acoustic channel and the characteristic of comb-like amplitude-frequency response. It not only does not give full play to its advantages, but also is very sensitive to frequency offset and phase noise, which makes the synchronization problem of OFDM extremely prominent. In order to solve these problems, this paper presents an overall scheme of synchronization detection for orthogonal multi-carrier underwater acoustic communication systems based on Fractional Fourier transform (Fractional Fourier transform) using symmetric triangular Linear Frequency Modulation (STLFM) signals as synchronization codes. By analyzing the energy convergence of STLFM signal in fractional Fourier domain, it is found that a periodic STLFM signal with FRFT at order 1p / 2p can produce a peak of energy, which greatly improves the resolution of the target. It provides a good condition for realizing synchronization. Then, the system model of STLFM signal as synchronization code is studied, and the joint synchronization algorithm using STLFM signal as synchronization code is derived, and the algorithm of estimating sampling frequency difference sf, carrier frequency difference cf and symbol timing 0k at order 1p and 2p are derived. In order to verify the correctness of the algorithm, the simulation experiment and performance analysis of the underwater acoustic communication system based on FRFT-OFDM are carried out. The bit error rate (bit error rate) is used as the evaluation index. Compared with the traditional OFDM system using linear frequency modulation (LFM) signal as synchronization code in the environment of multipath transmission and Doppler effect, the effectiveness and feasibility of the scheme based on FRFT-OFDM underwater acoustic communication are verified by pool experiment. It has certain application value.
【學(xué)位授予單位】:集美大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN929.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙興浩,鄧兵,陶然;分?jǐn)?shù)階傅里葉變換數(shù)值計(jì)算中的量綱歸一化[J];北京理工大學(xué)學(xué)報(bào);2005年04期
2 劉力;;分?jǐn)?shù)階傅里葉變換在數(shù)字水印中的應(yīng)用[J];東北電力大學(xué)學(xué)報(bào);2013年06期
3 陳小龍;劉寧波;王國(guó)慶;關(guān)鍵;;基于Radon-分?jǐn)?shù)階傅里葉變換的雷達(dá)動(dòng)目標(biāo)檢測(cè)方法[J];電子學(xué)報(bào);2014年06期
4 唐龍;彭真明;楊俊濤;何艷敏;張義德;;基于STFrFT域無窮范數(shù)的CT圖像邊緣檢測(cè)[J];光電工程;2014年07期
5 郭海燕;于仕財(cái);關(guān)鍵;何友;;基于FRFT模最大值的LFM信號(hào)參數(shù)估計(jì)方法[J];雷達(dá)科學(xué)與技術(shù);2010年05期
6 王景芳;許慧燕;;FRFT濾波的語音增強(qiáng)[J];計(jì)算機(jī)工程與應(yīng)用;2012年12期
7 倪寶景;李迎春;韓景龍;姜鵬;傅磊;;一種新型OOFDM符號(hào)同步技術(shù)[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
8 胡登鵬;張爾揚(yáng);;非數(shù)據(jù)輔助的OFDM系統(tǒng)采樣頻率同步算法[J];信號(hào)處理;2010年06期
9 安澄全;郝冬艷;;LFM信號(hào)的分?jǐn)?shù)階傅里葉域自適應(yīng)濾波算法研究[J];信號(hào)處理;2013年01期
10 杜朋朋;陳兵;;基于FrFT的LFM信號(hào)檢測(cè)與參數(shù)估計(jì)算法[J];無線電工程;2013年05期
相關(guān)碩士學(xué)位論文 前2條
1 海玲;OFDM系統(tǒng)中的定時(shí)與頻率同步算法研究[D];大連理工大學(xué);2012年
2 張森;OFDM系統(tǒng)中的載波同步研究[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號(hào):2088958
本文鏈接:http://sikaile.net/kejilunwen/wltx/2088958.html