天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

煤礦井下無(wú)線傳感器網(wǎng)絡(luò)的RSSI定位算法研究與實(shí)現(xiàn)

發(fā)布時(shí)間:2018-06-25 05:56

  本文選題:井下定位 + ZigBee ; 參考:《內(nèi)蒙古科技大學(xué)》2014年碩士論文


【摘要】:我國(guó)煤礦儲(chǔ)備豐富,是世界上煤礦生產(chǎn)第一大國(guó)。隨著普適計(jì)算、傳感技術(shù)、大數(shù)據(jù)和無(wú)線技術(shù)的發(fā)展,物聯(lián)網(wǎng)即將對(duì)各個(gè)行業(yè)帶來(lái)較大變革。無(wú)線傳感器網(wǎng)絡(luò)是物聯(lián)網(wǎng)重要組成部分,將其應(yīng)用在“感知煤礦”會(huì)對(duì)整個(gè)煤礦生產(chǎn)帶來(lái)深遠(yuǎn)影響。 煤礦井下目標(biāo)定位作為井下安監(jiān)系統(tǒng)的一部分,彌補(bǔ)了衛(wèi)星定位無(wú)法為井下環(huán)境提供位置信息的局限,為安全生產(chǎn)帶來(lái)了重要保障。由于目前我國(guó)井下定位系統(tǒng)大多仍采用射頻識(shí)別系統(tǒng),不能對(duì)人員目標(biāo)進(jìn)行及時(shí)定位,因此,通過(guò)對(duì)無(wú)線傳感器網(wǎng)絡(luò)、礦井定位系統(tǒng)及定位算法研究現(xiàn)狀進(jìn)行研究分析,確定了本文研究方向——面向煤礦井下基于RSSI的無(wú)線傳感器網(wǎng)絡(luò)定位技術(shù)。 首先,介紹定位算法的基本概念、原理及分類,具體研究了幾種經(jīng)典定位算法。其中,參數(shù)估計(jì)定位算法主要特點(diǎn)在于信號(hào)的參數(shù)容易從硬件上獲得,采集樣本工作量小,然而在室內(nèi)、井下等復(fù)雜環(huán)境中參數(shù)極易受到影響,導(dǎo)致測(cè)距不準(zhǔn)。指紋匹配算法把這些受到環(huán)境影響的信息作為指紋信息的一部分,利用模式匹配相關(guān)算法在惡劣環(huán)境中能夠獲得更高的定位精度。 其次,本文針對(duì)煤礦井下信道環(huán)境,提出了一種基于虛擬數(shù)據(jù)集和馬爾科夫鏈的指紋匹配定位算法。在離線階段,利用卡爾曼濾波原理獲得更加穩(wěn)定的數(shù)據(jù)樣本。針對(duì)指紋匹配算法數(shù)據(jù)采集工作量大的不足,提出構(gòu)建虛擬數(shù)據(jù)集的方案。文中對(duì)指紋匹配算法進(jìn)行了詳細(xì)的介紹,采用基于貝葉斯準(zhǔn)則框架的概率型算法,它考慮到每處采樣點(diǎn)RSSI分布先驗(yàn)假設(shè)和統(tǒng)計(jì)特征,其中核函數(shù)法將每處采樣點(diǎn)上的每個(gè)樣本數(shù)據(jù)賦予一個(gè)以自身為“核心”的函數(shù)來(lái)構(gòu)建概率密度分布,避免采用確定模型帶來(lái)的誤差。為優(yōu)化定位結(jié)果,考慮到先驗(yàn)概率對(duì)貝葉斯后驗(yàn)概率的影響,提出了基于高斯模型的馬爾科夫鏈定位算法,并對(duì)基于粒子濾波的實(shí)時(shí)追蹤算法進(jìn)行仿真。 最后,采用TI公司的Z-Stack協(xié)議棧和IOT-2530節(jié)點(diǎn)對(duì)ZigBee井下定位網(wǎng)絡(luò)進(jìn)行搭建,離線數(shù)據(jù)經(jīng)Matlab處理存儲(chǔ)在MySQL數(shù)據(jù)庫(kù)中。實(shí)驗(yàn)表明采用經(jīng)卡爾曼濾波后的數(shù)據(jù)集定位精度有所提高;利用經(jīng)參數(shù)估計(jì)法建立的虛擬數(shù)據(jù)集,可以大大降低離線采集階段的工作量;在線階段,采用該數(shù)據(jù)集結(jié)合基于高斯模型的馬爾科夫鏈算法在長(zhǎng)為80m的區(qū)域內(nèi)進(jìn)行實(shí)驗(yàn),定位均方根誤差為4.52m,,滿足井下目標(biāo)定位所需。
[Abstract]:With the development of pervasive computing , sensing technology , large data and wireless technology , the Internet of Things is about to bring great change to each industry . Wireless sensor network is an important part of Internet of Things , and its application in " perception coal mine " will have far - reaching impact on the whole coal mine production .

As part of the underground safety monitoring system , the target location of underground coal mine is used as part of the underground safety monitoring system , which makes up the limitation of the location information of the underground environment and the important guarantee for the safety production . Because of the fact that the underground positioning system in China still adopts the radio frequency identification system , the personnel target cannot be positioned in time , the research direction of the paper is determined , which is the wireless sensor network positioning technology based on RSSI in the coal mine .

Firstly , the basic concept , principle and classification of location algorithm are introduced , and several classical positioning algorithms are studied .

Secondly , aiming at the underground channel environment of coal mine , a fingerprint matching location algorithm based on virtual data set and Markov chain is proposed . In the off - line phase , a more stable data sample is obtained by using Kalman filter principle .

In the end , using the Z - Stack protocol stack of TI Company and the node to set up the ZigBee down - hole location network , the offline data is stored in MySQL database via Matlab . The experiment shows that the positioning accuracy of the data set after Kalman filter is improved ;
By using the virtual data set established by the parameter estimation method , the workload of the off - line acquisition phase can be greatly reduced ;
In the online phase , the Markov chain algorithm based on Gaussian model is used to carry out the experiment in the area of 80 m in length , and the root mean square error is 4.52m , which can meet the requirement of downhole target positioning .
【學(xué)位授予單位】:內(nèi)蒙古科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN929.5;TP212.9

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 方震;趙湛;郭鵬;張玉國(guó);;基于RSSI測(cè)距分析[J];傳感技術(shù)學(xué)報(bào);2007年11期

2 郭紅成;羅海勇;尹浩;韓霜;;基于線性插值和動(dòng)態(tài)指紋補(bǔ)償?shù)姆植际蕉ㄎ凰惴╗J];傳感技術(shù)學(xué)報(bào);2009年12期

3 金仁成;趙偉;石小培;;基于EKF算法的無(wú)線傳感器網(wǎng)絡(luò)定位技術(shù)研究[J];傳感技術(shù)學(xué)報(bào);2010年12期

4 李紅春;趙曉光;譚民;;無(wú)線傳感器網(wǎng)絡(luò)中基于粒子濾波的人員跟蹤方法[J];傳感技術(shù)學(xué)報(bào);2012年06期

5 劉曉文;張秀均;郝麗娜;郁萬(wàn)里;王杰;;基于WI-FI的井下定位算法研究[J];傳感技術(shù)學(xué)報(bào);2012年06期

6 郝麗娜;張秀均;郁萬(wàn)里;喬瑩;;基于RSS手指模的煤礦井下WLAN定位方法[J];傳感器與微系統(tǒng);2012年09期

7 王繼春;黃劉生;徐宏力;徐r

本文編號(hào):2064888


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/2064888.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶979c9***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com