水資源監(jiān)測(cè)物聯(lián)網(wǎng)平臺(tái)的設(shè)計(jì)
本文選題:物聯(lián)網(wǎng)平臺(tái) + 水資源監(jiān)測(cè)。 參考:《哈爾濱工業(yè)大學(xué)》2014年碩士論文
【摘要】:我國(guó)是一個(gè)水資源大國(guó),但由于人口眾多,人均水資源量卻低于全球平均水平。另外我國(guó)水旱災(zāi)害頻繁發(fā)生,水污染較為嚴(yán)重,導(dǎo)致水資源日益短缺。水資源監(jiān)測(cè)無疑是解決水資源日益短缺的重要基礎(chǔ)手段。目前水資源監(jiān)測(cè)以遠(yuǎn)程自動(dòng)監(jiān)測(cè)為主,正朝著智能化和網(wǎng)絡(luò)化的方向發(fā)展。物聯(lián)網(wǎng)技術(shù)的興起與應(yīng)用,能夠提高水資源監(jiān)測(cè)技術(shù)和質(zhì)量。物聯(lián)網(wǎng)既能融入到不同的應(yīng)用實(shí)例中,也能夠針對(duì)某一領(lǐng)域構(gòu)建統(tǒng)一平臺(tái),為不同應(yīng)用實(shí)例提供接口服務(wù),實(shí)現(xiàn)資源的共享。 本文針對(duì)水資源監(jiān)測(cè)設(shè)計(jì)一種物聯(lián)網(wǎng)平臺(tái),將平臺(tái)分為感知層、網(wǎng)絡(luò)層和應(yīng)用層三部分,對(duì)平臺(tái)感知層和應(yīng)用層軟硬件系統(tǒng)進(jìn)行設(shè)計(jì)和實(shí)現(xiàn)。在平臺(tái)感知層,設(shè)計(jì)并實(shí)現(xiàn)一種物聯(lián)網(wǎng)網(wǎng)關(guān)和ZigBee無線傳感器網(wǎng)絡(luò)原型系統(tǒng)。物聯(lián)網(wǎng)網(wǎng)關(guān)用于傳輸監(jiān)測(cè)數(shù)據(jù),使用S3C2410作為微處理器,使用Linux作為嵌入式操作系統(tǒng),使用以太網(wǎng)和GPRS網(wǎng)絡(luò)兩種方式接入監(jiān)測(cè)網(wǎng)絡(luò),使用RS485接口和ModBus協(xié)議采集多種水資源監(jiān)測(cè)儀表的監(jiān)測(cè)數(shù)據(jù),通過RS232接口采集ZigBee網(wǎng)絡(luò)的監(jiān)測(cè)數(shù)據(jù)。ZigBee無線傳感器網(wǎng)絡(luò)用于采集水資源數(shù)據(jù),使用以CC2430為核心的硬件平臺(tái),使用Z-Stack作為ZigBee協(xié)議棧,在此基礎(chǔ)上實(shí)現(xiàn)ZigBee節(jié)點(diǎn)的軟件系統(tǒng),能夠?qū)囟冗M(jìn)行采集。在平臺(tái)網(wǎng)絡(luò)層,使用公共網(wǎng)絡(luò)傳輸水資源監(jiān)測(cè)數(shù)據(jù)。在平臺(tái)應(yīng)用層,設(shè)計(jì)并實(shí)現(xiàn)了遠(yuǎn)程實(shí)時(shí)監(jiān)測(cè)管理系統(tǒng)、數(shù)據(jù)查詢系統(tǒng)和用于平臺(tái)二次開發(fā)的應(yīng)用系統(tǒng)接口。 在實(shí)驗(yàn)室環(huán)境下對(duì)平臺(tái)進(jìn)行測(cè)試。經(jīng)測(cè)試,平臺(tái)的基本功能已實(shí)現(xiàn)。該平臺(tái)是一種通用的水資源監(jiān)測(cè)平臺(tái),在實(shí)現(xiàn)水資源遠(yuǎn)程監(jiān)測(cè)的基礎(chǔ)上,,能夠支持以RS485為數(shù)據(jù)輸出接口、以ModBus為數(shù)據(jù)傳輸協(xié)議的智能監(jiān)測(cè)儀表的聯(lián)網(wǎng),兼容滿足水利部水資源監(jiān)測(cè)數(shù)據(jù)傳輸規(guī)約的數(shù)據(jù)傳輸終端,能夠?yàn)榈谌綉?yīng)用提供接口服務(wù),為用戶提供數(shù)據(jù)查詢平臺(tái),具有良好的擴(kuò)展性和二次開發(fā)能力。
[Abstract]:China is a large country of water resources, but the per capita water resources is lower than the global average because of its large population. In addition, flood and drought disasters occur frequently in our country, and water pollution is serious, which leads to the shortage of water resources day by day. Monitoring of water resources is undoubtedly an important basic means to solve the growing shortage of water resources. At present, the monitoring of water resources is mainly based on remote automatic monitoring, and is developing towards the direction of intelligence and networking. The rise and application of Internet of things technology can improve water resources monitoring technology and quality. The Internet of things can not only be integrated into different application examples, but also can build a unified platform for a certain field, which can provide interface services for different application cases and realize the sharing of resources. The platform is divided into three parts: perceptual layer, network layer and application layer. The software and hardware systems of platform awareness layer and application layer are designed and implemented. In the platform sensing layer, a prototype system of Internet of things gateway and ZigBee wireless sensor network is designed and implemented. The Internet of things gateway is used to transmit monitoring data, S3C2410 is used as microprocessor, Linux is used as embedded operating system, Ethernet and GPRS network are used to access the monitoring network. RS485 interface and ModBus protocol are used to collect monitoring data of various water resources monitoring instruments. Monitoring data of ZigBee network are collected by RS232 interface. ZigBee wireless sensor network is used to collect water resources data. CC2430 is used as the core hardware platform. Using Z-Stack as ZigBee protocol stack, the software system of ZigBee node is implemented, which can collect temperature. In the platform network layer, the public network is used to transmit water resources monitoring data. In the application layer of the platform, the remote real-time monitoring management system, the data query system and the application system interface for the secondary development of the platform are designed and implemented. The platform is tested in the laboratory environment. After testing, the basic function of the platform has been realized. The platform is a universal monitoring platform for water resources. On the basis of remote monitoring of water resources, it can support the networking of intelligent monitoring instruments with RS485 as the data output interface and ModBus as the data transmission protocol. The data transmission terminal which is compatible with the water resources monitoring data transmission protocol of the Ministry of Water Resources can provide interface service for the third party application and provide the data query platform for the user. It has good expansibility and secondary development ability.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:X84;TN929.5;TP391.44
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔長(zhǎng)俊;張喜雙;王桂榮;王紅建;;水質(zhì)自動(dòng)監(jiān)測(cè)站建設(shè)的要求與管理的思考[J];環(huán)境科學(xué)與管理;2007年02期
2 蔣鵬;;基于無線傳感器網(wǎng)絡(luò)的濕地水環(huán)境遠(yuǎn)程實(shí)時(shí)監(jiān)測(cè)系統(tǒng)關(guān)鍵技術(shù)研究[J];傳感技術(shù)學(xué)報(bào);2007年01期
3 周擁軍,萬里青,范治玉;I~2C總線在數(shù)字視頻記錄儀中的應(yīng)用與實(shí)現(xiàn)[J];電光與控制;2004年02期
4 朱小襄;ModBus通信協(xié)議及編程[J];電子工程師;2005年07期
5 宋凱,甘嵐,嚴(yán)麗平;U-Boot在S3C2410上的移植分析[J];華東交通大學(xué)學(xué)報(bào);2005年05期
6 劉國(guó)忠,王磊,鄧文怡,李月強(qiáng),呂乃光;環(huán)境水質(zhì)遠(yuǎn)程監(jiān)測(cè)技術(shù)研究[J];航空精密制造技術(shù);2003年01期
7 王寶軍;;水質(zhì)自動(dòng)監(jiān)測(cè)技術(shù)的發(fā)展現(xiàn)狀[J];科技致富向?qū)?2010年23期
8 俸皓,王渙濤,李海聰;基于GPRS的水資源質(zhì)量監(jiān)控解決方案[J];通信與信息技術(shù);2004年05期
9 瞿富強(qiáng);李志宏;吳永吉;韓建新;張錫煒;楊啟龍;;水情自動(dòng)測(cè)報(bào)系統(tǒng)遙測(cè)終端的開發(fā)與應(yīng)用[J];水電廠自動(dòng)化;2009年02期
10 張洋洋;趙建平;徐娟娟;;基于物聯(lián)網(wǎng)技術(shù)的水文監(jiān)測(cè)系統(tǒng)研究[J];通信技術(shù);2012年04期
本文編號(hào):1982171
本文鏈接:http://sikaile.net/kejilunwen/wltx/1982171.html