小型化印刷天線在寬帶通信中的應(yīng)用設(shè)計(jì)
本文選題:超寬帶天線 + 多頻段天線; 參考:《電子科技大學(xué)》2014年碩士論文
【摘要】:本文設(shè)計(jì)并研制了三種小型化平面印刷天線,主要工作概括如下:設(shè)計(jì)了一款共面波導(dǎo)饋電的超寬帶天線。該天線滿足超寬帶通信頻段(3.1-10.6GHz),且結(jié)構(gòu)緊湊,尺寸較小,駐波比平坦,H面方向圖是全向的。為了避免其它通信標(biāo)準(zhǔn)對超寬帶通信的干擾,在超寬帶天線上設(shè)計(jì)了三個(gè)阻帶。第一個(gè)阻帶來自于輻射貼片上腐蝕兩個(gè)以饋線為軸對稱的倒L型槽,槽長約為中心頻率對應(yīng)波長的四分之一,過濾的頻段為WIMAX(3.3-3.6 GHz),駐波比最大值可達(dá)到10;第二個(gè)阻帶來自于地板兩邊所腐蝕Z型的槽,槽長也約為中心頻率對應(yīng)波長的四分之一,過濾的頻段為WLAN(5.125-5.825 GHz),駐波比最大值可達(dá)到9;第三個(gè)阻帶來自于介質(zhì)基板背面增加一個(gè)開口環(huán),與饋線中心圓盤諧振產(chǎn)生阻帶,開口環(huán)周長為中心頻率對應(yīng)波長的二分之一,過濾了海事衛(wèi)星通信頻段(7.25-7.75GHz),駐波比最大值可達(dá)到6。設(shè)計(jì)一種超寬帶與窄帶相結(jié)合的多頻段天線。天線的地板與輻射貼片異面,地板上邊緣中心腐蝕的矩形槽拓展帶寬,滿足超寬帶通信(3.1-10.6 GHz)。在輻射貼片兩邊緣腐蝕槽,并且控制槽的位置、槽的長和寬使其滿足了兩個(gè)通信標(biāo)準(zhǔn),即GSM上行頻段(1.710-1.785 GHz)和WLAN(2.4-2.48 GHz)。以平面縫隙天線為基礎(chǔ),設(shè)計(jì)了一個(gè)頻率可重構(gòu)天線,天線尺寸非常小,只有25?20?1mm3,天線采用正面微帶饋電。該天線在地板中間形成一個(gè)主輻射槽,在主輻射槽兩側(cè),又腐蝕了兩個(gè)矩形槽,在槽中共加載了四個(gè)PIN二極管。天線可以工作在三種模式,即:(1)工作頻段為WIMAX(3.3-3.6 GHz)。(2)工作頻段為WLAN(5.725-5.825 GHz)。(3)上述兩個(gè)作頻段同時(shí)工作。通過控制二極管的通斷狀態(tài)使天線工作模式能自由切換,三種模式下的方向圖也非常相似,達(dá)到預(yù)期設(shè)計(jì)目標(biāo)。
[Abstract]:In this paper, three kinds of miniaturized planar printed antennas are designed and developed. The main work is summarized as follows: a coplanar waveguide fed UWB antenna is designed. The antenna can meet the requirement of 3.1-10.6 GHz in the UWB communication band. The antenna is compact and small in size. The VSWR flattened H-plane pattern is omnidirectional. In order to avoid interference of other communication standards to UWB communication, three stopbands are designed on UWB antenna. The first stopband is caused by corrosion on the radiation patch of two inverted L-shaped grooves with an axisymmetric feed, the length of which is about 1/4 of the wavelength corresponding to the central frequency. The filter frequency band is WIMAX(3.3-3.6 GHz, and the maximum standing wave ratio can reach 10. The second stop band comes from the Z-shaped groove corroded on both sides of the floor, and the length of the channel is about 1/4 of the corresponding wavelength of the center frequency. The filter frequency band is WLAN(5.125-5.825 GHz, and the maximum standing wave ratio can reach 9. The third stopband comes from the addition of an open loop on the back of the dielectric substrate, which resonates with the central disk of the feeder. The circumference of the opening ring is 1/2 of the wavelength corresponding to the central frequency. The maximum VSWR of 7.25-7.75GHz / s is obtained by filtering the frequency band of Inmarsat communication. A multi-band antenna combining UWB and narrow band is designed. The antenna floor and radiation patch have different surfaces, and the rectangular grooves corroded at the edge of the floor extend the bandwidth to meet the UWB communication requirements of 3.1-10.6 GHz. At the edge of the radiating patch, the position of the cell is controlled, and the length and width of the cell satisfy the two communication standards, I. e., 1.710-1.785 GHz in the GSM uplink band and 1.710-1.785 GHz in the WLAN(2.4-2.48 band. Based on the planar slot antenna, a frequency reconfigurable antenna is designed. The size of the antenna is very small, and the antenna size is only 25 / 20 / 1 mm / 3. The antenna is fed by the front microstrip. The antenna forms a main radiating slot in the middle of the floor. Two rectangular grooves are corroded on both sides of the main radiating slot, and four PIN diodes are loaded in the slot. The antenna can operate in three modes, that is, the working frequency band is WIMAX(3.3-3.6 GHz ~ (2) and the working frequency band is WLAN(5.725-5.825 GHz ~ (3) the above two working bands work simultaneously. By controlling the on-off state of the diode, the antenna mode can be switched freely. The pattern of the three modes is very similar, and the desired design goal is achieved.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN822
【共引文獻(xiàn)】
相關(guān)期刊論文 前1條
1 顧長青;韓國棟;;Hilbert縫隙天線的頻率可重構(gòu)設(shè)計(jì)[J];南京航空航天大學(xué)學(xué)報(bào);2006年06期
相關(guān)碩士學(xué)位論文 前10條
1 梁嬋君;MEMS可重構(gòu)天線的研究與設(shè)計(jì)[D];杭州電子科技大學(xué);2010年
2 溫玉娟;微帶天線的頻率可重構(gòu)及其與濾波器的協(xié)同設(shè)計(jì)[D];山西大學(xué);2011年
3 張琳;網(wǎng)格陣列天線的研究與設(shè)計(jì)[D];山西大學(xué);2011年
4 杜海霞;方向圖可重構(gòu)天線系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];蘇州大學(xué);2011年
5 張洪濤;自組構(gòu)天線及其特性的研究[D];西安電子科技大學(xué);2008年
6 張明芳;基于微分進(jìn)化策略的天線優(yōu)化設(shè)計(jì)[D];西南交通大學(xué);2008年
7 丁卓富;可重構(gòu)天線及其相控陣研究[D];電子科技大學(xué);2010年
8 吳志昂;頻率可重構(gòu)天線研究與設(shè)計(jì)[D];西南交通大學(xué);2012年
9 張興輝;微帶頻率可重構(gòu)天線的研究與設(shè)計(jì)[D];云南大學(xué);2012年
10 譚冠南;可重構(gòu)天線技術(shù)在無源測向中的應(yīng)用研究[D];江蘇科技大學(xué);2012年
,本文編號:1958663
本文鏈接:http://sikaile.net/kejilunwen/wltx/1958663.html