改進粒子群算法及其在傳感器網(wǎng)絡(luò)定位中的應(yīng)用
本文選題:群集智能 + 粒子群優(yōu)化算法 ; 參考:《遼寧工程技術(shù)大學(xué)》2014年碩士論文
【摘要】:粒子群優(yōu)化算法(PSO)是一種群集智能搜索算法,來源于對鳥類捕食的行為模擬和其模型構(gòu)建。因其定義簡單,為解決復(fù)雜優(yōu)化問題另辟蹊徑且十分有效,因此,許多學(xué)者對其十分關(guān)注,且經(jīng)過研究,該算法已在眾多領(lǐng)域得以廣泛應(yīng)用。但由于其理論還很不完善,還存在過早收斂的問題。到目前為止,為改善這些不足,許許多多的改進算法被提出。本文在此基礎(chǔ)上,以提高算法性能為最終目的,也深入研究了關(guān)于PSO的改進方法,并將此方法成功應(yīng)用于傳感器網(wǎng)絡(luò)的節(jié)點定位中。本文先是通過對粒子軌跡和算法收斂性的分析,分別對簡化PSO系統(tǒng)和一般化PSO系統(tǒng)進行研究分析。另外對無約束的軌跡實例分析,更直觀的描述了粒子的收斂性、周期性和離散性;诖饲胺治稣页鲋率惯^早收斂的成分和對其的解決方式。經(jīng)過研究分析,得出算法的全局收斂條件和局部收斂條件。本文通過對基于慣性權(quán)重、學(xué)習(xí)因子、收縮因子、混合算法的改進PSO算法的研究,以傳感器的節(jié)點定位為研究背景,充分利用混沌映射的優(yōu)勢,并結(jié)合PSO,提出了新的改進算法,仿真研究證實,該算法確實可以優(yōu)化傳感器網(wǎng)絡(luò)的節(jié)點定位問題,并使其定位精度得以提高,定位速度得以加快,在傳感器節(jié)點定位問題上是一種確實可行的解決途徑。
[Abstract]:Particle Swarm Optimization (PSO) is a cluster intelligent search algorithm derived from the behavior simulation and modeling of bird prey. Because its definition is simple and it is very effective to solve complex optimization problems, many scholars pay close attention to it, and through research, the algorithm has been widely used in many fields. But because its theory is still very imperfect, there is still the problem of premature convergence. So far, in order to improve these deficiencies, many improved algorithms have been proposed. On the basis of this, and with the aim of improving the performance of the algorithm, this paper also deeply studies the improved method of PSO, and successfully applies this method to node localization in sensor networks. Firstly, by analyzing the particle trajectories and the convergence of the algorithm, the simplified PSO system and the generalized PSO system are studied and analyzed respectively in this paper. In addition, the convergence, periodicity and dispersion of particles are described more intuitively by the analysis of unconstrained trajectory examples. Based on the previous analysis, find out the components that lead to premature convergence and the solution to it. By studying and analyzing, the global and local convergence conditions of the algorithm are obtained. In this paper, an improved PSO algorithm based on inertial weight, learning factor, contraction factor and hybrid algorithm is studied. Based on the sensor node location, the advantage of chaotic mapping is fully utilized, and a new improved algorithm is proposed. The simulation results show that the proposed algorithm can effectively optimize the node location problem of sensor networks and improve the accuracy and speed of localization. It is a feasible solution to the problem of sensor node location.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TP212.9;TN929.5;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 許少華;何新貴;;一種基于混沌遺傳與粒子群混合優(yōu)化的過程神經(jīng)網(wǎng)絡(luò)訓(xùn)練算法[J];控制與決策;2013年09期
2 伍大清;鄭建國;;基于混合策略自適應(yīng)學(xué)習(xí)的并行粒子群優(yōu)化算法[J];控制與決策;2013年07期
3 張春;;PID控制參數(shù)優(yōu)化在合成氨控制系統(tǒng)中的應(yīng)用[J];計算機仿真;2013年05期
4 任金霞;陽帥;;一種混沌編碼的粒子群優(yōu)化算法及其應(yīng)用[J];計算機仿真;2013年03期
5 黃太安;生佳根;徐紅洋;黃澤峰;;一種改進的簡化粒子群算法[J];計算機仿真;2013年02期
6 張迅;王平;邢建春;楊啟亮;;傳感器網(wǎng)絡(luò)中改進的粒子群優(yōu)化定位算法[J];計算機科學(xué);2012年12期
7 董平平;高東慧;田雨波;胡永建;;一種改進的自適應(yīng)慣性權(quán)重粒子群優(yōu)化算法[J];計算機仿真;2012年12期
8 高東慧;董平平;田雨波;周昊天;;一種改進的小波變異粒子群優(yōu)化算法[J];計算機工程;2012年21期
9 邵洪濤;秦亮曦;何瑩;;帶變異算子的非線性慣性權(quán)重PSO算法[J];計算機技術(shù)與發(fā)展;2012年08期
10 劉志坤;劉忠;唐小明;;基于改進型粒子群優(yōu)化的節(jié)點自定位算法[J];中南大學(xué)學(xué)報(自然科學(xué)版);2012年04期
,本文編號:1937212
本文鏈接:http://sikaile.net/kejilunwen/wltx/1937212.html