機(jī)載雷達(dá)前視探測(cè)方位超分辨算法
發(fā)布時(shí)間:2018-05-24 11:26
本文選題:機(jī)載雷達(dá) + 前視探測(cè) ; 參考:《信號(hào)處理》2014年12期
【摘要】:機(jī)載雷達(dá)前視探測(cè)在民用與軍用領(lǐng)域都具有廣泛應(yīng)用,例如跑道障礙物探測(cè)、低空飛行、自主著陸、偵察等。由于探測(cè)區(qū)域方位向多普勒帶寬幾乎為零,不滿(mǎn)足DBS與SAR技術(shù)處理的條件,因此方位分辨率由天線(xiàn)波束3d B寬度決定。針對(duì)雷達(dá)前視探測(cè)方位低分辨率問(wèn)題,本文提出一種基于改進(jìn)雷達(dá)信號(hào)模型的統(tǒng)計(jì)優(yōu)化超分辨算法。算法同時(shí)利用泊松與高斯噪聲的分布先驗(yàn)信息進(jìn)行數(shù)學(xué)建模,選擇貝葉斯最大似然準(zhǔn)則對(duì)超分辨反問(wèn)題正則化,通過(guò)近似迭代求解實(shí)現(xiàn)雷達(dá)方位向超分辨。仿真與實(shí)測(cè)數(shù)據(jù)結(jié)果表明,與改進(jìn)維納濾波算法相比較,該算法降低了噪聲敏感性,有效抑制虛假目標(biāo)產(chǎn)生,對(duì)于提高波束主瓣內(nèi)目標(biāo)分辨能力具有實(shí)際應(yīng)用意義。
[Abstract]:Airborne radar forward detection is widely used in both civil and military fields, such as runway obstacle detection, low altitude flight, autonomous landing, reconnaissance and so on. The azimuth Doppler bandwidth of the detected region is almost zero, which does not satisfy the processing conditions of DBS and SAR, so the azimuth resolution is determined by the antenna beam 3D B width. Aiming at the problem of low azimuth resolution of radar forward-looking detection, a statistical optimization super-resolution algorithm based on improved radar signal model is proposed in this paper. At the same time, the algorithm uses the prior information of Poisson and Gao Si noise distribution for mathematical modeling, selects Bayesian maximum likelihood criterion to regularize the super-resolution inverse problem, and realizes the radar azimuth super-resolution by approximate iterative solution. The simulation results show that compared with the improved Wiener filtering algorithm, the proposed algorithm reduces the noise sensitivity and effectively suppresses the false target generation. It is of practical significance for improving the resolution of the target in the main lobe of the beam.
【作者單位】: 電子科技大學(xué)電子工程學(xué)院;
【基金】:國(guó)防基礎(chǔ)科研研究計(jì)劃(B1420110182) 國(guó)家自然科學(xué)基金(61301273)
【分類(lèi)號(hào)】:TN959.73
,
本文編號(hào):1928878
本文鏈接:http://sikaile.net/kejilunwen/wltx/1928878.html
最近更新
教材專(zhuān)著