星地一體化網(wǎng)絡的無線資源管理方法研究
本文選題:星地一體化網(wǎng)絡 + 無線資源管理。 參考:《哈爾濱工業(yè)大學》2014年博士論文
【摘要】:隨著移動智能終端的普及及其應用多元化的發(fā)展,移動數(shù)據(jù)流量呈爆炸性增長,移動衛(wèi)星網(wǎng)絡(MSS, Mobile Satellite System)作為下一代網(wǎng)絡的重要組成部分,也面臨著為用戶提供高帶寬連接的挑戰(zhàn)。衛(wèi)星通信依賴于視距(LOS, Line of Sight)連接,在有遮擋的環(huán)境下信號強度將大幅衰減,因此,利用地面網(wǎng)絡的覆蓋特性對衛(wèi)星覆蓋進行補充,將二者融合,構建星地一體化網(wǎng)絡,實現(xiàn)高速移動寬帶網(wǎng)絡的全天候以及全地域無縫覆蓋,得到了廣泛的關注與研究。 星地一體化網(wǎng)絡從本質(zhì)上來說是異構的無線網(wǎng)絡,從拓撲結構來看,包括天基網(wǎng)絡與地基網(wǎng)絡兩部分:天基網(wǎng)絡為位于不同軌道的移動衛(wèi)星或星座,地基網(wǎng)絡為基于地面無線標準部署的蜂窩網(wǎng)絡,二者由移動衛(wèi)星網(wǎng)絡統(tǒng)一管理,構成一體化的網(wǎng)絡。星地一體化網(wǎng)絡的特點是,,移動衛(wèi)星網(wǎng)絡通過在地面部署基于MSS頻段的地面蜂窩網(wǎng)絡,改善傳統(tǒng)衛(wèi)星信號遭阻擋區(qū)域的覆蓋,能夠帶來系統(tǒng)用戶數(shù)的提升以及網(wǎng)絡資源的更充分利用。此目標的實現(xiàn)依賴于在一體化網(wǎng)絡架構下對系統(tǒng)頻率、功率、帶寬、接入權限等資源進行高效分配與管理,克服兩種網(wǎng)絡在傳輸機制、接入技術、組織方式等方面的差異,為用戶提供無縫透明的服務質(zhì)量。 因此,本文給出面向未來移動通信需求的星地一體化網(wǎng)絡架構,對無線資源管理方法進行深入研究,得到了一些具有積極意義和參考價值的方法和結論。主要的研究工作與成果可概括為以下幾個方面: 首先,給出星地一體化網(wǎng)絡架構及無線資源管理的理論基礎。從技術及應用層面出發(fā),部署集中式架構的地基蜂窩網(wǎng)絡,并與天基移動衛(wèi)星網(wǎng)絡進行一體化設計,實現(xiàn)高帶寬與全球無縫的覆蓋。基于此框架,深入分析了星地一體化網(wǎng)絡分層小區(qū)間的干擾對系統(tǒng)頻譜效率(Spectral efficiency)以及能量效率(Energy efficiency)的影響,為后續(xù)星地一體化網(wǎng)絡能量高效的分層干擾管理奠定理論基礎;給出一個通用的公平QoS映射方法,利用多媒體業(yè)務的自適應帶寬調(diào)整特性ABA(Adaptive Bandwidth Adaptation),在移動衛(wèi)星網(wǎng)絡與地面網(wǎng)絡之間非對稱地調(diào)整業(yè)務的服務等級,為后續(xù)的呼叫接入控制提供接入用戶數(shù)增益;給出了支持衛(wèi)星接口的媒質(zhì)無關切換(MIH,Media Independent Handover)機制,為后續(xù)的垂直切換提供底層消息傳輸支持。 其次,由于星地一體化網(wǎng)絡利用衛(wèi)星波束小區(qū)、宏蜂窩小區(qū)、微蜂窩小區(qū)來靈活地實現(xiàn)對熱點區(qū)域、非熱點區(qū)域以及零星業(yè)務區(qū)域的無縫覆蓋,導致分層小區(qū)間存在干擾。目前對這種分層干擾的管理一般通過在衛(wèi)星波束小區(qū)與地面小區(qū)間復用頻率以實現(xiàn)干擾避免,在地面小區(qū)間進行干擾協(xié)調(diào)。本文提出了能量高效的干擾協(xié)調(diào)策略IC-LC,針對由于衛(wèi)星攝動或運動對地面小區(qū)產(chǎn)生干擾的情況,利用矩陣帶狀化MR(Matrix Relaxation)算法和流功率分配SPA(Stream Power Allocation)算法進行波束賦形與發(fā)射功率分配,以較低的運算復雜度對地面小區(qū)間的干擾進行協(xié)調(diào),有效抑制小區(qū)間的干擾。通過建立模塊化的能耗模型,驗證了IC-LC的低運算復雜度可降低處理中心的處理能耗,實現(xiàn)對系統(tǒng)能量效率的優(yōu)化。 再次,呼叫接入控制CAC(Connection Admission Control)負責調(diào)度星地一體化網(wǎng)絡中用戶的呼叫請求,并為其分配資源進行準入控制。由于星地一體化網(wǎng)絡中存在不同覆蓋區(qū)的新呼叫以及切換呼叫(包括水平切換與垂直切換),需要根據(jù)呼叫的特性以及網(wǎng)絡狀況確定調(diào)度與準入控制準則。本文將接入調(diào)度轉換為帶優(yōu)先級的多服務隊列調(diào)度MSQS(Multi-Server Queue Scheduling)問題,基于系統(tǒng)狀態(tài)的遍歷性以及平穩(wěn)狀態(tài)的存在性,提出了N-非強占優(yōu)先排隊準則N-NPPQ(N-Non Preemptive Priority Queue),利用N-隊列動態(tài)調(diào)度新呼叫與切換呼叫;并進一步針對垂直切換與水平切換呼叫提出基于資源預留的準入控制準則,利用衛(wèi)星波束小區(qū)穩(wěn)定狀態(tài)的準可逆性,將波束小區(qū)進行虛擬窗劃分并計算切換概率來建立動態(tài)的預留池,有效平衡了垂直切換與水平切換呼叫之間的接入矛盾。接入調(diào)度以及準入控制共同完成呼叫接入控制,有效降低了由于系統(tǒng)資源調(diào)配不均所導致的呼叫阻塞率,優(yōu)化了預留資源的利用率。 最后,垂直切換使星地一體化網(wǎng)絡中的用戶能夠在移動衛(wèi)星網(wǎng)絡與地面網(wǎng)絡間無縫漫游,并能夠根據(jù)用戶需求以及網(wǎng)絡狀態(tài)使用戶始終連接到最佳的網(wǎng)絡。垂直切換包括網(wǎng)絡發(fā)現(xiàn)、切換觸發(fā)與切換判決、切換執(zhí)行等步驟,其中切換觸發(fā)與切換判決用于確定是否觸發(fā)垂直切換并確定切換目標網(wǎng)絡,是實現(xiàn)無縫垂直切換的重要前提及保障。鑒于不必要的切換觸發(fā)將產(chǎn)生不必要的信令開銷及資源浪費,同時導致失敗切換與不必要切換,本文提出基于多閾值的切換觸發(fā)算法,通過預測用戶在地面蜂窩小區(qū)中的滯留時間及信道占用時間,計算得到多個切換閾值來觸發(fā)用戶由移動衛(wèi)星網(wǎng)絡到地面網(wǎng)絡的垂直切換,降低了已有基于接收信號強度(RSS, Received Signal Strength)以及速率感知的切換觸發(fā)策略存在的失敗切換與不必要切換數(shù)。鑒于星地一體化網(wǎng)絡中移動衛(wèi)星網(wǎng)絡時延較長,垂直切換判決需要盡快完成,提出了基于信用評價的切換判決算法,利用用戶對網(wǎng)絡的評價作為垂直切換判決的參考,避免傳統(tǒng)的多屬性切換判決算法在星地一體化網(wǎng)絡中所需的參數(shù)收集、計算以及長判決時延。
[Abstract]:With the popularity of mobile intelligent terminals and the development of diversified applications, mobile data traffic has exploded. As an important part of the next generation network, MSS (Mobile Satellite System) is also facing the challenge of providing high bandwidth connections for users. Satellite communications depend on the view distance (LOS, Line of Sight) connections, In the environment of occlusion, the signal intensity will be greatly attenuated. Therefore, the coverage of the ground network is used to supplement the satellite coverage. The integration of the two, the integrated network of star and earth, the all-weather and seamless coverage of the high speed mobile broadband network is achieved, and extensive attention and research have been obtained.
The star ground integration network is essentially a heterogeneous wireless network. From the topology structure, it includes two parts: space-based network and foundation network: the space-based network is a mobile satellite or constellation located in different orbit. The foundation network is a cellular network based on the ground wireless standard, and the two is managed by a mobile satellite network. The characteristic of the integrated network is that the mobile satellite network deploys the ground cellular network based on the MSS frequency band on the ground to improve the coverage of the traditional satellite signals, which can bring about the increase of the number of users and the more full use of the network resources. The realization of this goal depends on the integrated network architecture. Under the system frequency, power, bandwidth, access rights and other resources to efficient allocation and management, to overcome the two networks in the transmission mechanism, access technology, organization and other aspects of the difference, to provide users with seamless transparent quality of service.
Therefore, this paper gives an integrated satellite to ground network architecture for future mobile communication requirements, and studies the wireless resource management methods in depth, and obtains some positive and reference methods and conclusions. The main research work and results can be summarized as follows:
First, we give a theoretical basis for the integrated network architecture and wireless resource management. From the technical and application level, the foundation cellular network is deployed and integrated with the space-based mobile satellite network to achieve the seamless coverage of high bandwidth and global. Based on this framework, the integrated network of star and earth network is analyzed. The impact of inter cell interference on Spectral efficiency and energy efficiency (Energy efficiency) lays a theoretical foundation for the hierarchical interference management of the subsequent integrated network energy efficient network. A universal fair QoS mapping method is given, and the adaptive bandwidth adjustment characteristic ABA (Adaptiv) is used in multimedia services (Adaptiv). E Bandwidth Adaptation), the service level of the service is adjusted asymmetrically between the mobile satellite network and the ground network, and the access user number gain is provided for the subsequent call access control, and the medium independent switching (MIH, Media Independent Handover) mechanism supporting the satellite interface is given to provide the underlying message transmission for the subsequent vertical handover. Lose support.
Secondly, satellite and ground integration network uses satellite beam cell, macro cellular cell and microcellular cell to achieve seamless coverage of hot area, non hot area and sporadic business area, which leads to interference between layered communities. The management of this layered interference is generally passed in satellite beam cell and ground cell. In this paper, an energy efficient interference coordination strategy, IC-LC, is proposed in this paper. In this paper, the matrix banded MR (Matrix Relaxation) algorithm and the flow power allocation SPA (Stream Power Allocation) algorithm are used to interfere with the ground cell due to satellite perturbations or motion. The beamforming and transmitting power allocation are carried out to coordinate the interference between the ground cells with a lower computational complexity, and the interference between the cells is effectively suppressed. By establishing a modular energy consumption model, the low computing complexity of IC-LC can be proved to reduce the energy consumption of the processing center and achieve the optimization of the energy efficiency of the system.
Again, the call access control CAC (Connection Admission Control) is responsible for scheduling the call requests of users in the integrated network and assigning resources for access control. Due to the existence of new calls and switching calls (including horizontal and vertical handover) in the star ground integration network, the call needs to be based on the call. This paper transforms the access scheduling into a multi service queue scheduling MSQS (Multi-Server Queue Scheduling) problem with priority. Based on the ergodicity of the system state and the existence of the stationary state, the N- non strong dominant first queuing criterion N-NPPQ (N-Non Preemptive Priority Queu) is proposed in this paper. E), using the N- queue to dynamically schedule new calls and switching calls, and further put forward the access control criteria based on resource reservation for vertical and horizontal switching calls. Using the quasi reversibility of the stable state of the satellite beam cell, the virtual window is divided and the switching probability is calculated to establish a dynamic reservation pool. The access scheduling and admittance control jointly complete call access control, which effectively reduces the call blocking rate caused by unequal resource allocation and optimizes the utilization of reserved resources.
Finally, vertical handover enables users in the integrated network to roam seamlessly between the mobile satellite network and the ground network, and can always connect users to the best network according to user needs and network status. Vertical handover includes network discovery, switching triggering and switching decisions, switching execution and other steps, in which switching triggers are triggered. The handoff decision is used to determine whether to trigger vertical handover and to determine the switching target network. It is an important prerequisite and guarantee for seamless vertical handoff. In view of the unnecessary switching triggers will produce unnecessary signaling overhead and resource waste, and cause failure switching and unnecessary switching, this paper proposes a switching trigger based on multiple thresholds. By predicting the retention time of the user in the cellular cell and the time of the channel occupancy, multiple switching thresholds are calculated to trigger the user's vertical handover from the mobile satellite network to the ground network, and the existing switching trigger strategy based on the received signal intensity (RSS, Received Signal Strength) and rate perception is reduced. In view of the long delay of the mobile satellite network in the stellar integrated network, the verdict of vertical switching needs to be completed as soon as possible. A handoff decision algorithm based on credit evaluation is proposed, and the user's evaluation of the network is used as a reference for the vertical handoff decision, so the traditional multi attribute handoff algorithm is avoided in the star ground. Parameter collection, computation and long decision delay in the physical network.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TN929.5
【參考文獻】
相關期刊論文 前10條
1 黃飛;許輝;周恒;吳詩其;;LEO衛(wèi)星通信中基于服務質(zhì)量的綜合加權接入策略[J];電子與信息學報;2008年10期
2 丁丁;馬東堂;魏急波;王國玉;;多業(yè)務LEO衛(wèi)星網(wǎng)絡中最優(yōu)呼叫允許控制及切換管理策略[J];電子與信息學報;2010年07期
3 楊斌;何鋒;靳瑾;徐廣涵;;LEO衛(wèi)星通信系統(tǒng)覆蓋時間和切換次數(shù)分析[J];電子與信息學報;2014年04期
4 焦現(xiàn)軍;曹桂興;;MSV-ATC衛(wèi)星移動通信技術研究[J];航天器工程;2007年05期
5 寧磊;郭慶;王振永;楊明川;姜開元;;面向用戶體驗和速度感知的垂直切換判決算法[J];哈爾濱工業(yè)大學學報;2013年09期
6 甘仲民;張更新;;衛(wèi)星通信技術的新發(fā)展[J];通信學報;2006年08期
7 丁丁;馬東堂;魏急波;王國玉;;LEO衛(wèi)星網(wǎng)絡中基于門限的切換優(yōu)先資源管理機制[J];信號處理;2009年08期
8 劉思楊;秦飛;高鎮(zhèn);張源;何異舟;;衛(wèi)星LTE:IMT-Advanced系統(tǒng)衛(wèi)星部分的中國提案(英文)[J];中國通信;2013年10期
9 馮曉峰;祁飛;呂宗庭;;異構無線網(wǎng)絡聯(lián)合呼叫接納控制優(yōu)化算法[J];西安電子科技大學學報;2013年05期
10 張萌;于海;付昱霖;常永宇;;移動衛(wèi)星系統(tǒng)與LTE網(wǎng)絡間干擾共存性能的研究(英文)[J];中國通信;2013年07期
相關博士學位論文 前2條
1 丁丁;LEO衛(wèi)星網(wǎng)絡呼叫允許控制及切換管理機制研究[D];國防科學技術大學;2010年
2 那振宇;衛(wèi)星互聯(lián)網(wǎng)服務質(zhì)量保障方法研究[D];哈爾濱工業(yè)大學;2010年
本文編號:1858265
本文鏈接:http://sikaile.net/kejilunwen/wltx/1858265.html