基于改進(jìn)型蟻群算法的藍(lán)牙散列網(wǎng)動(dòng)態(tài)更新策略
本文選題:蟻群算法 + 藍(lán)牙 ; 參考:《合肥工業(yè)大學(xué)》2014年碩士論文
【摘要】:蟻群算法和禁忌搜索算法都是人類學(xué)習(xí)自然界現(xiàn)象而總結(jié)出來(lái)的人工智能算法。蟻群算法因其具有魯棒性、可擴(kuò)展性、分布性而受到人們關(guān)注。但其自身仍然存在局限性。收斂速度慢和容易陷入局部最優(yōu)成為蟻群算法面臨的兩大問(wèn)題。針對(duì)這些問(wèn)題,學(xué)者提出了采用精英策略的蟻群算法以及MMAS (MAX-MIN Ant System)算法等解決方案。禁忌搜索算法是一種啟發(fā)式搜索算法用來(lái)跳出局部最優(yōu)解算法。本文通過(guò)設(shè)置禁忌搜索表來(lái)存儲(chǔ)每一輪搜索到的最優(yōu)路徑,并對(duì)該路徑上的信息濃度進(jìn)行控制,從而對(duì)算法進(jìn)行優(yōu)化。通過(guò)實(shí)驗(yàn)結(jié)果表明,該改進(jìn)算法有效地提高了算法的性能。藍(lán)牙技術(shù)是一種免費(fèi)的無(wú)線接入方式,人們可以利用藍(lán)牙隨時(shí)隨地進(jìn)行數(shù)據(jù)通信。藍(lán)牙協(xié)議從1994年推出至今已有20年的歷史,藍(lán)牙協(xié)議也在不斷完善和改進(jìn),但至今為止藍(lán)牙協(xié)議中沒(méi)有對(duì)藍(lán)牙組網(wǎng)技術(shù)進(jìn)行定義,只定義了在藍(lán)牙微微網(wǎng)中藍(lán)牙設(shè)備間的通信規(guī)則。本文探索一種新的藍(lán)牙散列網(wǎng)的組網(wǎng)方式。將蟻群算法和藍(lán)牙散列網(wǎng)有機(jī)地結(jié)合起來(lái)。很多散列網(wǎng)組建中,在網(wǎng)絡(luò)建立好之后,如果沒(méi)有增加和減少節(jié)點(diǎn),網(wǎng)絡(luò)基本就穩(wěn)定沒(méi)有變化。而本文采用的藍(lán)牙散列網(wǎng)的組網(wǎng)方式,組網(wǎng)速度快,并利用蟻群算法中信息素濃度的思想,對(duì)網(wǎng)絡(luò)的狀態(tài)進(jìn)行監(jiān)測(cè),動(dòng)態(tài)地對(duì)網(wǎng)絡(luò)進(jìn)行調(diào)整。本文將藍(lán)牙散列網(wǎng)中主節(jié)點(diǎn)和橋節(jié)點(diǎn)的負(fù)載狀況看作它們的信息素濃度,只要有數(shù)據(jù)包通過(guò)主節(jié)點(diǎn)和橋節(jié)點(diǎn)進(jìn)行轉(zhuǎn)發(fā),就對(duì)該節(jié)點(diǎn)的信息素濃度進(jìn)行加深。通過(guò)各個(gè)主節(jié)點(diǎn)和橋節(jié)點(diǎn)的信息素濃度來(lái)判斷網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),并對(duì)需要調(diào)整的網(wǎng)絡(luò)進(jìn)行調(diào)整。對(duì)信息素濃度較高和較低的節(jié)點(diǎn)進(jìn)行調(diào)整,使得網(wǎng)絡(luò)的中主節(jié)點(diǎn)和橋節(jié)點(diǎn)的信息素濃度達(dá)到相對(duì)均衡,整個(gè)網(wǎng)絡(luò)達(dá)到一種負(fù)載相對(duì)均衡的狀態(tài)。
[Abstract]:Ant colony algorithm and Tabu search algorithm are artificial intelligence algorithms that human beings learn from natural phenomena. Ant colony algorithm (ACA) has attracted much attention because of its robustness, expansibility and distribution. However, its own limitations still exist. Slow convergence and easy to fall into local optimization are two major problems faced by ant colony algorithm. To solve these problems, some solutions such as the ant colony algorithm using elite strategy and the MMAS MAX-MIN Ant system are proposed. Tabu search algorithm is a heuristic search algorithm used to jump out of the local optimal solution algorithm. In this paper, the Tabu search table is set to store the optimal path for each round of search, and the information concentration on the path is controlled to optimize the algorithm. The experimental results show that the improved algorithm can effectively improve the performance of the algorithm. Bluetooth technology is a free wireless access method, people can use Bluetooth anytime, anywhere for data communication. Bluetooth protocol has a history of 20 years since it was launched in 1994, and the Bluetooth protocol has been continuously improved and improved. However, there is no definition of Bluetooth networking technology in Bluetooth protocol up to now. Only the communication rules between Bluetooth devices in Bluetooth piconet are defined. This paper explores a new networking method of Bluetooth hash network. The ant colony algorithm and Bluetooth hash network are combined organically. In the construction of many hash networks, if the nodes are not increased or decreased, the network will remain stable. In this paper, the Bluetooth hashing network is used to build the network, and the idea of pheromone concentration in ant colony algorithm is used to monitor the status of the network and dynamically adjust the network. In this paper, the load status of primary node and bridge node in Bluetooth hash network is regarded as their pheromone concentration, and the pheromone concentration of the node is deepened as long as the packets are forwarded through the primary node and bridge node. The topological structure of the network is judged by the pheromone concentration of each primary node and the bridge node, and the network that needs to be adjusted is adjusted. By adjusting the pheromone concentration of the nodes with high and low pheromone concentration, the pheromone concentration of the main node and the bridge node is relatively balanced, and the whole network reaches a load balance state.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN925;TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程文青;郎為民;楊宗凱;譚運(yùn)猛;;一種基于散列鏈的高效微支付系統(tǒng)[J];計(jì)算機(jī)科學(xué);2004年12期
2 樂(lè)紅兵;季巖;;新的設(shè)備查找及散列網(wǎng)形成協(xié)議[J];計(jì)算機(jī)工程與應(yīng)用;2008年34期
3 榮新節(jié);散列分類算法[J];微電子學(xué)與計(jì)算機(jī);1992年06期
4 劉娜;沈西挺;;關(guān)聯(lián)規(guī)則挖掘算法中散列方法改進(jìn)的研究[J];才智;2008年01期
5 曹晨;;散列技術(shù)在SIP服務(wù)器中的應(yīng)用[J];中國(guó)新通信;2010年05期
6 王景景;董新利;;基于仿生學(xué)的多跳藍(lán)牙散列網(wǎng)組網(wǎng)算法[J];計(jì)算機(jī)工程與應(yīng)用;2007年20期
7 鐘誠(chéng);并行散列選擇算法[J];計(jì)算機(jī)工程與科學(xué);2000年03期
8 南雨宏;陳綺;;基于散列辭典的蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)方法[J];計(jì)算機(jī)技術(shù)與發(fā)展;2011年10期
9 任嵐;郭忠文;;分布式動(dòng)態(tài)藍(lán)牙散列網(wǎng)形成算法[J];計(jì)算機(jī)應(yīng)用研究;2006年03期
10 王艷軍;安小宇;;動(dòng)態(tài)HASHING算法及其改進(jìn)[J];光盤(pán)技術(shù);2009年06期
相關(guān)會(huì)議論文 前2條
1 常洞霞;錢(qián)衛(wèi)寧;周傲英;;大規(guī)模集群上基于預(yù)散列的連接處理和優(yōu)化[A];NDBC2010第27屆中國(guó)數(shù)據(jù)庫(kù)學(xué)術(shù)會(huì)議論文集(B輯)[C];2010年
2 宋春來(lái);殷新春;孟純煜;;基于部分盲簽名和散列鏈的安全電子投票方案[A];2006年全國(guó)開(kāi)放式分布與并行計(jì)算學(xué)術(shù)會(huì)議論文集(一)[C];2006年
相關(guān)碩士學(xué)位論文 前6條
1 任嵐;基于動(dòng)態(tài)環(huán)境藍(lán)牙多跳散列網(wǎng)形成算法研究[D];中國(guó)海洋大學(xué);2005年
2 周麗雅;基于實(shí)際設(shè)備性能的藍(lán)牙散列網(wǎng)構(gòu)建算法[D];中國(guó)海洋大學(xué);2005年
3 王元斌;基于接入點(diǎn)的藍(lán)牙散列網(wǎng)形成及路由算法[D];中國(guó)海洋大學(xué);2004年
4 雷紅利;查詢執(zhí)行算法的設(shè)計(jì)與優(yōu)化[D];華中科技大學(xué);2004年
5 王芳芳;基于改進(jìn)型蟻群算法的藍(lán)牙散列網(wǎng)動(dòng)態(tài)更新策略[D];合肥工業(yè)大學(xué);2014年
6 董新利;基于仿生學(xué)研究的多跳藍(lán)牙散列網(wǎng)組網(wǎng)設(shè)計(jì)[D];中國(guó)海洋大學(xué);2005年
,本文編號(hào):1849219
本文鏈接:http://sikaile.net/kejilunwen/wltx/1849219.html