寬帶光鎖相環(huán)技術(shù)研究
發(fā)布時(shí)間:2018-04-29 07:14
本文選題:科斯塔斯光鎖相環(huán) + 環(huán)路濾波器 ; 參考:《電子科技大學(xué)》2014年碩士論文
【摘要】:星際自由空間的信息傳輸要求通信系統(tǒng)能夠?qū)崿F(xiàn)更寬的帶寬,更高的數(shù)據(jù)傳輸速率和更長(zhǎng)的傳輸距離。與傳統(tǒng)的微波通信相比,激光通信具有更大的優(yōu)勢(shì)。例如,相干光通信技術(shù)可以提高系統(tǒng)的接收靈敏度,增強(qiáng)信號(hào)傳輸?shù)目垢蓴_能力,非常適合信號(hào)的長(zhǎng)距離傳輸,常用于自由空間光通信領(lǐng)域。其中,光鎖相環(huán)是相干光通信的關(guān)鍵技術(shù),它能實(shí)現(xiàn)本振光與信號(hào)光的相位同步,具有很大的研究?jī)r(jià)值。本文針對(duì)1064nm BPSK零差相干光通信系統(tǒng),以寬帶光鎖相環(huán)為研究課題,重點(diǎn)關(guān)注光鎖相環(huán)的捕獲性能,希望能夠快速地捕獲較大的激光差頻,本文的主要內(nèi)容分為以下四個(gè)部分:1.介紹了光鎖相環(huán)技術(shù)的研究背景,概述了國(guó)內(nèi)外光鎖相環(huán)的研究動(dòng)態(tài);以科斯塔斯光鎖相環(huán)為結(jié)構(gòu)基礎(chǔ),分析了光鎖相環(huán)的工作原理,并分別對(duì)光鎖相環(huán)的核心部件及其涉及的關(guān)鍵技術(shù),包括高性能窄線寬的可調(diào)激光器,90°光混頻器,環(huán)路濾波器以及頻率輔助捕捉技術(shù),進(jìn)行了具體的分析。2.對(duì)科斯塔斯光鎖相環(huán)系統(tǒng)進(jìn)行拉普拉斯域的線性模型分析,通過數(shù)學(xué)計(jì)算和理論推導(dǎo),設(shè)計(jì)了一組適合本課題的光鎖相環(huán)參數(shù);應(yīng)用Matlab/Simulink軟件對(duì)科斯塔斯光鎖相環(huán)系統(tǒng)進(jìn)行仿真實(shí)驗(yàn)研究,仿真實(shí)驗(yàn)表明科斯塔斯光鎖相環(huán)能在80 ms以內(nèi)捕獲1MHz的激光差頻,而對(duì)100MHz的激光差頻就需要很長(zhǎng)的時(shí)間,驗(yàn)證了光鎖相環(huán)需要增添輔助頻率捕獲模塊的必要性。通過改變科斯塔斯光鎖相環(huán)的結(jié)構(gòu),提出了一種掃描方案來加快頻率捕獲過程。改進(jìn)后的仿真系統(tǒng)成功實(shí)現(xiàn)了50ms內(nèi)對(duì)7MHz差頻的捕獲。3.通過比較NPRO激光器溫度調(diào)諧與PZT調(diào)諧的特點(diǎn),課題先對(duì)NPRO激光器溫度調(diào)諧,使得信號(hào)光與本振光的差頻處于PZT調(diào)諧范圍內(nèi),再利用PZT調(diào)諧實(shí)現(xiàn)快速鎖相。采用MAX1978芯片設(shè)計(jì)了NPRO激光器的自動(dòng)溫度控制電路,實(shí)驗(yàn)測(cè)試該溫控系統(tǒng)的溫控精度高達(dá)0.01℃,溫控后信號(hào)光與本振光平衡探測(cè)后的差頻電信號(hào)輸出波形相對(duì)穩(wěn)定,其頻率雖在不斷波動(dòng),但處于60MHz以內(nèi)。4.介紹了寬帶光鎖相環(huán)的鑒頻捕獲原理,并以STC89C51RC單片機(jī)為控制核心,設(shè)計(jì)了寬帶鑒頻捕獲電路。實(shí)驗(yàn)測(cè)得光鎖相環(huán)本身的捕捉帶為600kHz,鎖定狀態(tài)持續(xù)時(shí)間約為16 min;而在增添鑒頻捕獲模塊后,環(huán)路能夠在1 s內(nèi)快速捕獲±60MHz的差頻信號(hào),并且此后的鎖相狀態(tài)能持續(xù)152 s左右。
[Abstract]:The information transmission of the interstellar free space requires that the communication system can achieve wider bandwidth, higher data transmission rate and longer transmission distance. Compared with the traditional microwave communication, the laser communication has a greater advantage. For example, coherent optical communication technology can improve the receiving sensitivity of the system and enhance the anti-interference ability of the signal transmission. The long distance transmission is very suitable for the signal. It is often used in the field of free space optical communication. In which the optical phase locked loop is the key technology of coherent optical communication. It can synchronize the phase of the light and the signal light. This paper focuses on the 1064nm BPSK zero difference coherent optical communication system, and focuses on the wide-band optical phase locked loop. The main contents of this paper are divided into four parts: 1. the research background of optical phase locked loop is introduced, and the research trends of optical phase locked loop at home and abroad are summarized. The working principle of the optical phase locked loop is analyzed based on the kastas optical phase locked loop. The key components of the optical phase locked loop and the key technologies involved, including the adjustable laser with high performance narrow linewidth, 90 degree optical mixer, loop filter and frequency assisted capture technology, are analyzed by.2.. The linear model of the Laplasse domain is analyzed by the Kostas optical phase locked loop system, and the mathematical calculation and the mathematical calculation are carried out. A set of optical phase locked loop parameters suitable for this subject are designed, and the simulation experiment of the costar optical phase locked loop system is carried out with Matlab/Simulink software. The simulation experiment shows that the costar optical phase locked loop can capture 1MHz laser difference frequency within 80 ms, while the laser difference frequency of 100MHz needs a long time, and the light is verified. The phase-locked loop needs to add the necessity of the auxiliary frequency capture module. By changing the structure of the costar optical lock loop, a scanning scheme is proposed to speed up the frequency capture process. The improved simulation system successfully realizes the characteristics of the 7MHz difference frequency acquisition in 50ms by comparing the temperature tuning of the NPRO laser and the tuning of the PZT. The temperature tuning of the NPRO laser makes the difference frequency between the signal light and the local oscillator in the PZT tuning range, and then uses the PZT tuning to realize the rapid phase lock. The MAX1978 chip is used to design the automatic temperature control circuit of the NPRO laser. The temperature control precision of the temperature control system is up to 0.01 C. After the temperature control, the signal light and the local vibration light balance are detected. The frequency of the differential frequency signal is relatively stable, although its frequency is constantly fluctuating, but within 60MHz,.4. introduces the principle of frequency discrimination capture of broadband optical phase locked loop, and designs a broadband frequency discrimination capture circuit with STC89C51RC single chip as the control core. The experiment results that the capture band of the light locked loop is 600kHz, and the lock state duration is about time. For 16 min, and after adding the frequency acquisition module, the loop can quickly capture the difference frequency signal of + 60MHz in 1 s, and thereafter the phase-locked state can last around 152 s.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN929.1
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前1條
1 徐東明;相干光通信的實(shí)用化研究[J];西安郵電學(xué)院學(xué)報(bào);1996年01期
,本文編號(hào):1818948
本文鏈接:http://sikaile.net/kejilunwen/wltx/1818948.html
最近更新
教材專著