天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

可重構(gòu)天線系統(tǒng)尋優(yōu)算法及應(yīng)用研究

發(fā)布時(shí)間:2018-04-29 05:24

  本文選題:可重構(gòu)天線 + 尋優(yōu)算法 ; 參考:《解放軍信息工程大學(xué)》2014年碩士論文


【摘要】:隨著無線通信技術(shù)的不斷發(fā)展,對天線的要求越來越高,可重構(gòu)天線以寬頻帶接收、自適應(yīng)調(diào)整等特點(diǎn)在近幾年得到了迅速發(fā)展。從提高實(shí)際可重構(gòu)天線應(yīng)用系統(tǒng)中的尋優(yōu)速度角度出發(fā),圍繞可重構(gòu)天線系統(tǒng)的尋優(yōu)算法展開研究,并對可重構(gòu)天線與其他通信系統(tǒng)的融合應(yīng)用進(jìn)行了一定的理論研究,主要內(nèi)容如下:1.首先對可重構(gòu)天線及其系統(tǒng)構(gòu)成和原理展開了介紹,介紹了可重構(gòu)天線的分類。對幾種常用的仿生學(xué)全局優(yōu)化算法以及在可重構(gòu)天線系統(tǒng)尋優(yōu)中的應(yīng)用進(jìn)行了簡單的介紹,構(gòu)成了本文的研究基礎(chǔ)。2.在基本遺傳算法基礎(chǔ)上,提出一種自適應(yīng)引導(dǎo)進(jìn)化遺傳算法。算法中采用佳點(diǎn)集方法產(chǎn)生初始種群,結(jié)合保留精英個(gè)體策略,對種群進(jìn)行分割,各子種群并行交叉變異,且其中一個(gè)子種群為隨機(jī)產(chǎn)生的。為提高算法收斂速度,分別對各子種群中較優(yōu)個(gè)體進(jìn)行優(yōu)秀基因位統(tǒng)計(jì),據(jù)此對其他個(gè)體采取一種自適應(yīng)引導(dǎo)變異操作。通過將算法運(yùn)行過程建模為有限齊次馬氏鏈,證明了算法的全局收斂性和收斂快速性。實(shí)驗(yàn)結(jié)果表明,自適應(yīng)引導(dǎo)進(jìn)化遺傳算法較其他提到的遺傳算法在收斂速度和準(zhǔn)確度上都有較大提高。3.針對實(shí)際可重構(gòu)天線系統(tǒng)特別是多開關(guān)可重構(gòu)天線系統(tǒng)在實(shí)際信號接收方面的實(shí)時(shí)性需求,在自適應(yīng)引導(dǎo)進(jìn)化遺傳算法基礎(chǔ)之上,提出了一種針對可重構(gòu)天線系統(tǒng)的誘導(dǎo)變異算法。該算法通過對每一代可重構(gòu)天線狀態(tài)中的較優(yōu)的開關(guān)組合分布進(jìn)行分析,找出對天線性能影響大的“關(guān)鍵開關(guān)”并確定其最優(yōu)狀態(tài)下的開關(guān)的狀態(tài)值-“優(yōu)秀開關(guān)狀態(tài)”。根據(jù)以上統(tǒng)計(jì)結(jié)果,每一代中較差的可重構(gòu)天線狀態(tài)在所有關(guān)鍵開關(guān)位的狀態(tài)會被誘導(dǎo)變異成為相應(yīng)的“優(yōu)秀開關(guān)狀態(tài)”。對39-開關(guān)的可重構(gòu)天線進(jìn)行仿真實(shí)驗(yàn),結(jié)果顯示,在50 MHz、200 MHz、350 MHz頻率上的尋優(yōu)過程中該算法收斂速度至少是基本遺傳算法的2.15倍。利用同尺寸的實(shí)際天線系統(tǒng)對算法性能進(jìn)行實(shí)際測試,該系統(tǒng)由可重構(gòu)天線、接收機(jī)、信號源和PC構(gòu)成,以信號在工作頻點(diǎn)的功率譜值為適應(yīng)度函數(shù),在多個(gè)頻點(diǎn)對可重構(gòu)天線的狀態(tài)尋優(yōu),給出了各頻點(diǎn)的尋優(yōu)前后功率譜。通過分析比較,可以發(fā)現(xiàn)文中提出的算法可使系統(tǒng)性能得到大幅提升。4.研究了可重構(gòu)天線在認(rèn)知無線電技術(shù)以及MIMO系統(tǒng)中的應(yīng)用,重點(diǎn)分析了可重構(gòu)天線陣與同等天線選擇規(guī)模的固定天線陣相比在信噪比提升方面的性能對比。推導(dǎo)了多輸入多輸出系統(tǒng)鏈路功率的概率分布和平均值計(jì)算公式。對發(fā)射和接收端最大天線數(shù)和天線狀態(tài)數(shù)分別為4和2的可重構(gòu)天線陣進(jìn)行理論分析和仿真實(shí)驗(yàn),結(jié)果表明,通過天線狀態(tài)選擇,可重構(gòu)天線陣在提高信噪比方面性能至少能達(dá)到同等規(guī)模的固定天線陣的76.5%。對MIMO系統(tǒng)的可重構(gòu)天線狀態(tài)尋優(yōu)算法進(jìn)行設(shè)計(jì),以目標(biāo)方向上天線增益為適應(yīng)度函數(shù),仿真結(jié)果顯示本文算法不僅使天線在目標(biāo)方向上增益最大,還具有抑制已知方向的干擾信號的潛能。
[Abstract]:With the continuous development of wireless communication technology, the requirements for the antenna are getting higher and higher. The characteristics of the reconfigurable antenna have been developed rapidly in the past few years. The fusion application of reconfigurable antenna and other communication systems has been studied in theory. The main contents are as follows: 1. first, the structure and principle of reconfigurable antenna and its system are introduced, and the classification of reconfigurable antennas is introduced. The application of some common bionics global optimization algorithms and the optimization of reconfigurable antenna systems is introduced. Based on the basic genetic algorithm, an adaptive guidance evolutionary genetic algorithm is proposed based on the basic genetic algorithm (.2.). In the algorithm, the best point set method is used to produce the initial population, and the elite individual strategy is used to divide the population, and the subpopulations are crossed and mutable in parallel, and one of the subpopulations is the following. In order to improve the convergence speed of the algorithm, an excellent gene bit statistics is carried out for the superior individuals of each subpopulation respectively. According to this, an adaptive guidance mutation operation is adopted for other individuals. By modeling the operation process of the algorithm to a finite homogeneous Markov chain, the global convergence and convergence speed of the algorithm are proved. The experimental results show that the algorithm is self-contained. The adaptive guidance evolutionary genetic algorithm (GA) has higher convergence speed and accuracy than the other genetic algorithms mentioned in this paper..3., based on the adaptive guidance evolutionary genetic algorithm (adaptive guidance evolutionary genetic algorithm), is based on the real time demand of the actual reconfigurable antenna system, especially the multi switch reconfigurable antenna system in the actual signal reception. The algorithm of induced mutation of the reconfigurable antenna system. By analyzing the better switch combination distribution in the state of each reconfigurable antenna, the algorithm finds the key switch which has a large impact on the performance of the antenna and determines the state value of the switch under the optimal state - "excellent switch state". The state of the poor reconfigurable antenna in all key switch bits will be induced to be induced to be the corresponding "excellent switch state". A simulation experiment on the reconfigurable antenna of the 39- switch shows that the convergence rate of the algorithm at 50 MHz, 200 MHz, and 350 MHz frequency is at least 2.15 times that of the basic genetic algorithm. The performance of the algorithm is tested with the actual antenna system of the same size. The system consists of a reconfigurable antenna, a receiver, a signal source and a PC. The power spectrum of a reconfigurable antenna is optimized at a number of frequency points. The power spectrum of each frequency point is given. In order to find the algorithm proposed in this paper, the performance of the system can be greatly improved by.4., and the application of reconfigurable antenna to cognitive radio and MIMO system is studied. The performance comparison of reconfigurable antenna array with the fixed antenna array with the same antenna selection size is analyzed. The multi input and multiple output is derived. The probability distribution and average value calculation formula of the system link power. The reconfigurable antenna array with the maximum number of antennas at the transmitter and receiver and the number of antenna states of 4 and 2, respectively, is analyzed and simulated. The results show that the performance of the reconfigurable antenna array can at least reach the same scale in improving the signal to noise ratio through the selection of the antenna state. The 76.5%. of the fixed antenna array is designed for the optimization algorithm of the reconfigurable antenna state of the MIMO system. The antenna gain is the fitness function in the direction of the target. The simulation results show that the algorithm not only makes the antenna gain the maximum in the direction of the target, but also has the potential of suppressing the known direction of the interference signal.

【學(xué)位授予單位】:解放軍信息工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2014
【分類號】:TN820

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 梁亞瀾;聶長海;;覆蓋表生成的遺傳算法配置參數(shù)優(yōu)化[J];計(jì)算機(jī)學(xué)報(bào);2012年07期

2 黃嵐;齊季;譚穎;楊濱;;一種求解矩形排樣問題的遺傳-離散粒子群優(yōu)化算法[J];電子學(xué)報(bào);2012年06期

3 劉全;王曉燕;傅啟明;張永剛;章曉芳;;雙精英協(xié)同進(jìn)化遺傳算法[J];軟件學(xué)報(bào);2012年04期

4 田雨波;譚冠南;;頻率可重構(gòu)超寬帶天線研究[J];電波科學(xué)學(xué)報(bào);2012年02期

5 鄭琴;沙建新;方昌鑾;;一種有效求解含有不連續(xù)“開關(guān)”過程的變分資料同化的遺傳算法[J];中國科學(xué):地球科學(xué);2012年03期

6 趙萬忠;王春燕;;基于遺傳算法優(yōu)化的EPS路感混合H_2/H_∞控制[J];中國科學(xué):技術(shù)科學(xué);2012年03期

7 俎云霄;周杰;;Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm[J];Chinese Physics B;2012年01期

8 李軍華;黎明;;噪聲環(huán)境下遺傳算法的收斂性和收斂速度估計(jì)[J];電子學(xué)報(bào);2011年08期

9 趙凱南;鄭劍鋒;孫佳文;陳文華;馮正和;;帶有倒L寄生單元的低剖面方向圖可重構(gòu)天線[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年02期

10 孫佳文;陳文華;馮正和;趙凱南;;頻率方向圖復(fù)合可重構(gòu)寄生單極子天線陣列[J];電波科學(xué)學(xué)報(bào);2011年01期

,

本文編號:1818595

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/1818595.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bce37***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com