雙向測(cè)距與時(shí)間同步系統(tǒng)提高測(cè)量精度的方法研究
本文選題:雙向單程偽距測(cè)量 + DRTS; 參考:《中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心)》2014年碩士論文
【摘要】:隨著移動(dòng)通信、全球衛(wèi)星導(dǎo)航系統(tǒng)等科學(xué)領(lǐng)域的不斷發(fā)展,精密測(cè)距與時(shí)間同步的重要性越來(lái)越凸現(xiàn)出來(lái)。很多工程和科學(xué)領(lǐng)域都需要精密的時(shí)間同步,例如,世界各時(shí)間實(shí)驗(yàn)室都需要納秒或者亞納秒量級(jí)的高精度時(shí)間同步;衛(wèi)星的發(fā)射和測(cè)控,以及試驗(yàn)靶場(chǎng)的原子鐘都需要進(jìn)行標(biāo)校;導(dǎo)航衛(wèi)星之間、衛(wèi)星與地面站、地面站與地面站之間需要高精度的時(shí)間同步;另外,自主編隊(duì)航天器(AFF)、組網(wǎng)飛行器等,也需要進(jìn)行精密的基線測(cè)量和時(shí)間同步。因此,研究雙向測(cè)距與時(shí)間同步技術(shù)對(duì)上述領(lǐng)域的發(fā)展具有重要意義。本文通過(guò)對(duì)雙向測(cè)距與時(shí)間同步系統(tǒng)精度提高方法的研究,重點(diǎn)闡述了提高系統(tǒng)測(cè)量精度的兩種技術(shù),即載波相位平滑偽距技術(shù)和設(shè)備時(shí)延標(biāo)定技術(shù)。本文的主要研究?jī)?nèi)容和研究成果如下: (1)本文從雙向測(cè)距與時(shí)間同步系統(tǒng)(DRTS)信號(hào)處理算法的角度出發(fā),討論通過(guò)改進(jìn)原始觀測(cè)數(shù)據(jù)預(yù)處理算法來(lái)提高系統(tǒng)的測(cè)距精度。根據(jù)載波相位平滑偽距原理,以及雙向測(cè)距與時(shí)間同步系統(tǒng)對(duì)精度和實(shí)時(shí)性的要求,通過(guò)采用實(shí)驗(yàn)室的實(shí)測(cè)數(shù)據(jù)對(duì)DRTS載波相位平滑偽距算法其進(jìn)行了研究和仿真。仿真結(jié)果表明,DRTS載波相位平滑前后的偽距誤差有了很大程度的改善(在設(shè)定平滑長(zhǎng)度M=300情況下,平滑后的偽距誤差的均方根從原始的1.3652降低至0.9389),驗(yàn)證了該算法對(duì)提高雙向測(cè)距與時(shí)間同步系統(tǒng)測(cè)量精度的有效性。同時(shí)針對(duì)系統(tǒng)中出現(xiàn)的偽碼突發(fā)錯(cuò)誤與周跳所引起的測(cè)距誤差,通過(guò)采用上一次經(jīng)過(guò)平滑后的測(cè)量值代替本次平滑值的辦法進(jìn)行修復(fù),從而保證了系統(tǒng)的測(cè)量精度。經(jīng)過(guò)實(shí)驗(yàn)分析,DRTS載波相位平滑偽距還存在這樣的問(wèn)題,如果選取的平滑長(zhǎng)度較小時(shí),平滑效果不明顯;選取平滑長(zhǎng)度較大時(shí),效果雖然明顯,但卻犧牲了系統(tǒng)的實(shí)時(shí)性。因此在選取平滑長(zhǎng)度時(shí)要在平滑效果與實(shí)時(shí)性之間要進(jìn)行衡量和取舍。在本實(shí)驗(yàn)中,平滑長(zhǎng)度選取在200~300之間時(shí),既滿足系統(tǒng)實(shí)時(shí)性又滿足精度要求,為下一步DRTS中DSP的算法實(shí)現(xiàn)提供了理論依據(jù)。 (2)雙向測(cè)距與時(shí)間同步系統(tǒng)基于雙向單程偽距測(cè)量機(jī)制,收發(fā)信機(jī)設(shè)備時(shí)延包含在了系統(tǒng)的測(cè)量值之中,,在很大程度上影響了系統(tǒng)的測(cè)距精度和性能。為此,在分析DRTS設(shè)備時(shí)延組成的基礎(chǔ)上,針對(duì)系統(tǒng)提出了DRTS終端閉環(huán)自校方法,并對(duì)該設(shè)備時(shí)延校準(zhǔn)方法的有效性進(jìn)行了驗(yàn)證。結(jié)果表明,該DRTS終端閉環(huán)自校方法的準(zhǔn)確度和精度均達(dá)到了納秒量級(jí),為雙向測(cè)距與時(shí)間同步系統(tǒng)的下一步設(shè)計(jì)提供了有效的參考。
[Abstract]:With the development of mobile communication, global satellite navigation system and other scientific fields, the importance of precision ranging and time synchronization is becoming more and more prominent. In many fields of engineering and science, precise time synchronization is required. For example, high precision time synchronization of nanosecond or sub-nanosecond magnitude is required in all time laboratories around the world; satellite launch and measurement and control, And the atomic clocks of the test range need to be calibrated; between navigation satellites, between satellites and earth stations, between earth stations and earth stations need high precision time synchronization; in addition, autonomous formation of spacecraft, such as AFF, netting aircraft, etc. Precise baseline measurements and time synchronization are also required. Therefore, the study of bidirectional ranging and time synchronization technology is of great significance to the development of these fields. Based on the research on the methods of improving the accuracy of the bidirectional ranging and time synchronization system, this paper focuses on two techniques to improve the measurement accuracy, namely, carrier phase smoothing pseudo-range technique and equipment delay calibration technique. The main contents and results of this paper are as follows: This paper discusses how to improve the ranging accuracy of the system by improving the preprocessing algorithm of the original observation data from the point of view of the signal processing algorithm of the bidirectional ranging and time synchronization system (DRTS). According to the principle of carrier phase smoothing pseudo-range and the requirement of precision and real-time of bidirectional ranging and time synchronization system, the DRTS carrier phase smoothing pseudo-range algorithm is studied and simulated by using the measured data in the laboratory. The simulation results show that the pseudo-range error of DRTS carrier phase smoothing is greatly improved. The root mean square (RMS) of the smoothing pseudo-range error is reduced from 1.3652 to 0.9389, which verifies the effectiveness of the proposed algorithm in improving the measurement accuracy of the bidirectional ranging and time synchronization systems. At the same time, the error caused by pseudo-code burst and cycle slip is repaired by replacing the smoothing value with the previous smoothing value, so as to ensure the measurement accuracy of the system. Through the experimental analysis of DRTS carrier phase smoothing pseudo-range still exist such a problem, if the selected smoothing length is small, the smoothing effect is not obvious; when the selection of large smoothing length, the effect is obvious, but at the expense of the real-time of the system. Therefore, when selecting the smoothing length, it is necessary to measure and choose between the smoothing effect and the real time. In this experiment, when the smoothing length is between 200 and 300, it not only meets the real-time and precision requirements of the system, but also provides a theoretical basis for the implementation of the DSP algorithm in the next step of DRTS. 2) Bidirectional ranging and time synchronization system is based on bidirectional single-pass pseudo-range measurement mechanism. The delay of transceiver equipment is included in the measurement value of the system, which greatly affects the ranging accuracy and performance of the system. Based on the analysis of the delay components of DRTS devices, a closed loop self-calibration method for DRTS terminals is proposed, and the validity of the calibration method is verified. The results show that the accuracy and accuracy of the closed-loop self-calibration method for DRTS terminal are in the order of nanosecond, which provides an effective reference for the next step design of bidirectional ranging and time synchronization system.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(國(guó)家授時(shí)中心)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN919.34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 尹仲琪;彭靜英;黃凱冬;胡勇;沈世科;;時(shí)延測(cè)量方法的分析與比較[J];電訊技術(shù);2006年06期
2 王云;陳培;楊穎;;載波相位輔助消除偽碼多徑誤差的算法研究(英文)[J];電子科技大學(xué)學(xué)報(bào);2009年02期
3 潘樹國(guó);王慶;柯福陽(yáng);鄧健;;一種GPS網(wǎng)絡(luò)RTK整周模糊度解算方法(英文)[J];Journal of Southeast University(English Edition);2009年04期
4 鐘興旺;陳豪;;雙向單程距離與時(shí)差測(cè)量系統(tǒng)及零值標(biāo)定方法[J];電子測(cè)量與儀器學(xué)報(bào);2009年04期
5 劉立龍,劉基余,李光成;一種適合單頻GPS動(dòng)態(tài)求解整周模糊度的方法[J];飛行器測(cè)控學(xué)報(bào);2005年01期
6 陳怡;劉瀛;聶磊;;載波相位平滑在GPS偽距提取中的應(yīng)用[J];航天控制;2011年01期
7 原亮;楚恒林;王宏兵;顧青濤;趙偉;;衛(wèi)星導(dǎo)航設(shè)備組合時(shí)延測(cè)試方法研究[J];中國(guó)科學(xué):物理學(xué) 力學(xué) 天文學(xué);2011年05期
8 楊春燕;吳德偉;盧艷娥;張輝;;基于補(bǔ)充卡爾曼濾波的載波相位平滑偽距算法[J];空軍工程大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年05期
9 閆野,郗曉寧,任萱;利用星間測(cè)距實(shí)現(xiàn)衛(wèi)星網(wǎng)自主定位[J];空間科學(xué)學(xué)報(bào);2000年01期
10 李剛;魏海濤;孫書良;;導(dǎo)航設(shè)備時(shí)延測(cè)量技術(shù)分析[J];無(wú)線電工程;2011年12期
本文編號(hào):1813473
本文鏈接:http://sikaile.net/kejilunwen/wltx/1813473.html