異質(zhì)兼容集成微系統(tǒng)的實現(xiàn)途徑與技術(shù)的研究
發(fā)布時間:2018-04-23 01:07
本文選題:Si + Ⅲ-Ⅴ。 參考:《北京郵電大學(xué)》2014年博士論文
【摘要】:近十幾年來,信息產(chǎn)業(yè)突飛猛進(jìn),現(xiàn)代光通信網(wǎng)面臨著空前的挑戰(zhàn)。光纖通信網(wǎng)的數(shù)據(jù)處理與收發(fā)模塊中包含了大量的光電子器件,所以光電子器件直接影響著光纖通信網(wǎng)絡(luò)的綜合性能。為了提高現(xiàn)代光纖通信網(wǎng)絡(luò)的性能,人們將光電子器件集成到了同一芯片中,即光電集成。光電集成技術(shù)使光通信系統(tǒng)趨于型化甚至微型化,即集成微系統(tǒng)。集成微系統(tǒng)的優(yōu)點是很明顯的:首先,體積小、重量輕,易于攜帶,可以更廣泛地應(yīng)用于航天、無線通信等領(lǐng)域;其次,集成微系統(tǒng)省去了原來分立的各個器件之間的連接與耦合,大大降低了系統(tǒng)的出錯概率,提高了其穩(wěn)定性;再次,集成微系統(tǒng)具有能耗低的優(yōu)點。鑒于此,光電集成成為了光電子器件發(fā)展的大勢所趨。 本論文以單片光電集成為出發(fā)點,重點研究了實現(xiàn)異質(zhì)兼容集成微系統(tǒng)的三種途徑:GaAs/Si異變外延、InAs/GaAs自組織量子點、Ⅲ-Ⅴ族含硼半導(dǎo)體材料。論文的主要研究內(nèi)容及創(chuàng)新點如下: 1.針對GaAs/Si異變外延生長,系統(tǒng)地優(yōu)化了傳統(tǒng)兩步法中低溫GaAs成核層的生長溫度、厚度及高溫GaAs外延層的生長溫度。進(jìn)而提出了三步法,即在低溫成核層(420℃)與高溫外延層(685℃)之間插入一層中間溫度層(630℃,300nm)。實驗表明:三步法可以顯著降低GaAs異變外延層的表面均方根(RMS)粗糙度,1.8μm的GaAs異變外延層的粗糙度由3.6nm降至2.6nm(掃描面積10×10μm)。進(jìn)一步,結(jié)合循環(huán)退火,將粗糙度降至1.8nm,同時樣品表面的腐蝕坑密度由108/cm2降低至106/cm2量級; 2.利用三步法,在Si(100)襯底上生長出了InGaAs/GaAs應(yīng)變雙層結(jié)構(gòu),并利用自卷曲技術(shù)成功制備出了結(jié)構(gòu)質(zhì)量良好的Si基Ⅲ-Ⅴ族微米管陣列; 3.深入開展了InAs/GaAs自組織量子點的MOCVD生長研究。優(yōu)化了單層InAs/GaAs量子點的沉積速率,Ⅴ/Ⅲ比,生長溫度,低溫蓋層厚度等關(guān)鍵參數(shù)。在此基礎(chǔ)上,生長了多層的InAs/GaAs量子點,引入GaAs0.5P0.5應(yīng)變補(bǔ)償層,有效抑制了多層量子點的應(yīng)變積累,使量子點的PL強(qiáng)度隨著層數(shù)的增加而增加。此外,還利用InGaAs應(yīng)變減少層使量子點發(fā)光波長紅移; 4.在GaAs/Si異變外延與量子點生長研究基礎(chǔ)上,開展了Si基InAs/GaAs自組織量子點的初步生長探索。實驗發(fā)現(xiàn):在相同InAs沉積厚度的情況下,Si基InAs/GaAs量子點的尺寸大于GaAs基量子點,從而使量子點PL波長紅移。此外,還將量子點插入Si基GaAs異變外延層阻擋穿透位錯向上穿透,然而,新的位錯會在量子點表面大島處成核,使得樣品表面腐蝕坑密度由106/cm2增加至107/cm2,所以仍需要進(jìn)一步優(yōu)化Si基量子點生長條件; 5.相對于三元材料,含硼四元材料的晶格與能帶能夠更加靈活地調(diào)整,是實現(xiàn)單片集成的另一種可能途徑。作為含硼四元材料研究的鋪墊,BGaAs三元合金生長首先被研究:分別采用TMGa與TEGa兩種Ga源來生長BGaAs三元合金,研究發(fā)現(xiàn):使用TEGa可以在更低的生長溫度下(500℃)獲得質(zhì)量良好的BGaAs合金,且可以使B組分由原來的3%提高到5%; 6. BInGaAs/GaAs高應(yīng)變多量子阱結(jié)構(gòu)及光學(xué)性質(zhì)研究:生長了In組分為0.35與0.4的InGaAs/GaAs高應(yīng)變多量子阱,以及相應(yīng)的BInGaAs/GaAs多量子阱,研究發(fā)現(xiàn):在應(yīng)變相同的條件下,BInGaAs/GaAs多量子阱發(fā)光波長更長,而對于發(fā)光波長相同的樣品,BInGaAs/GaAs多量子阱的應(yīng)變較低,可以生長得到結(jié)晶質(zhì)量更好的樣品; 7.深入開展了BGaAsSb四元合金及BGaAsSb/GaAs多量子阱的生長實驗。研究發(fā)現(xiàn):B并入可以使得上述兩種BGaAsSb材料中Sb的并入提高。經(jīng)分析后認(rèn)為:因Sb具有表面集聚效應(yīng),在生長銻化物(如GaAsSb)時,會有一部分Sb以液態(tài)金屬的形式留在銻化物薄膜表面,阻礙了Sb元素并入至合金中。而B并入可以使得這種表面集聚現(xiàn)象減弱,從而使得Sb并入效率提高。
[Abstract]:In the past decade, the information industry has developed rapidly, and the modern optical communication network is facing unprecedented challenges. The data processing and transceiver module of the optical fiber communication network contains a large number of optoelectronic devices, so optoelectronic devices have a direct impact on the comprehensive performance of the optical fiber communication network. The sub devices are integrated into the same chip, that is photoelectric integration. Optoelectronic integration technology makes optical communication systems tend to be typed or even miniaturized, that is, integrated microsystems. The advantages of integrated microsystems are obvious: first, small volume, light weight, easy to carry, and more widely used in space, wireless communication and other fields; secondly, integrated microsystems. It saves the connection and coupling between the original discrete devices, greatly reduces the error probability of the system and improves its stability. Again, integrated microsystems have the advantages of low energy consumption. In view of this, optoelectronic integration has become the trend of the development of optoelectronic devices.
In this paper, we focus on three ways to realize heterogeneous integrated microsystems: GaAs/Si heteroepitaxy, InAs/GaAs self organized quantum dots, and boron doped semiconductor materials. The main contents and innovations of this paper are as follows:
1. in view of the GaAs/Si heteroepitaxy growth, the growth temperature, thickness and the growth temperature of the GaAs epitaxial layer of the low temperature GaAs in the traditional two step method are systematically optimized. Then the three step method is put forward, that is, the intermediate temperature layer (630 degrees C) is inserted between the low temperature nucleation layer (420 C) and the high temperature epitaxial layer (685 C). The experiment shows that: three steps The surface mean square root (RMS) roughness of the GaAs heteroepitaxial layer can be reduced significantly. The roughness of the GaAs heteroepitaxial layer of 1.8 m is reduced from 3.6nm to 2.6nm (scanning area 10 x 10 mu m). Further, the roughness is reduced to 1.8nm by cyclic annealing, and the corrosion pit density of the sample surface is reduced from 108/cm2 to 106/cm2 magnitude.
2. the InGaAs/GaAs strain double layer structure was grown on the Si (100) substrate by the three step method, and the Si based III - V microtube array with good structure quality was successfully prepared by self winding technology.
3. the MOCVD growth of InAs/GaAs self organized quantum dots was carried out in depth. The key parameters such as the deposition rate of single InAs/GaAs quantum dots, V / III ratio, growth temperature, and low temperature cap thickness were optimized. On this basis, the multilayer InAs/GaAs quantum dots were grown and the GaAs0.5P0.5 strain compensation layer was introduced to effectively restrain the strain of multi layer quantum dots. The PL intensity of quantum dots increases with the increase of the number of layers. In addition, the InGaAs strain reduction layer is used to make the emission wavelength of the quantum dots red shift.
4. on the basis of GaAs/Si heteroepitaxy and quantum dot growth, the initial growth of Si based InAs/GaAs self organized quantum dots is explored. The experiment shows that the size of Si based InAs/GaAs quantum dots is larger than the GaAs based quantum dots in the same InAs deposition thickness, thus the PL wavelength of the QDs is red shift. Furthermore, the quantum dots are inserted into the Si base GaAs. The heteroepitaxial layer obstruct the penetration dislocation upward, however, the new dislocation will nucleate at the large Isle of the quantum dot surface, which makes the surface corrosion pit density increase from 106/cm2 to 107/cm2, so it is still necessary to further optimize the growth conditions of the Si based quantum dots.
5. relative to three yuan material, the lattice and energy band of four yuan containing boron can be adjusted more flexibly. It is another possible way to realize monolithic integration. As the paving of boron containing four yuan material, the growth of BGaAs three alloy is first studied: the BGaAs three yuan alloy was grown by TMGa and TEGa two kinds of Ga sources respectively. The study found: using TE Ga can obtain good quality BGaAs alloy at lower growth temperature (500 C) and increase the B fraction from 3% to 5%.
Study on the structure and optical properties of 6. BInGaAs/GaAs high strain multiple quantum wells: the growth of In multiquantum wells with 0.35 and 0.4 InGaAs/GaAs high strain quantum wells and corresponding BInGaAs/GaAs multiple quantum wells. It is found that, under the same strain conditions, BInGaAs/GaAs multiple quantum wells have longer light waves, and BInG for samples with the same luminous wavelength. The strain of aAs/GaAs multiple quantum wells is low, and the samples with better crystalline quality can be grown.
7. the growth experiments of BGaAsSb four element alloy and BGaAsSb/GaAs multiple quantum well have been carried out in depth. It is found that B incorporation can increase the incorporation of Sb in the two BGaAsSb materials. After analysis, there will be some Sb in the form of antimony in the form of liquid metals in the form of antimony (such as GaAsSb) because of the aggregation effect of Sb. The surface of the film hinders the incorporation of Sb elements into the alloy, and the incorporation of B can reduce the surface agglomeration phenomenon, thus improving the incorporation efficiency of Sb.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TN304;TN929.11
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 ;500強(qiáng)[J];大經(jīng)貿(mào);2002年01期
,本文編號:1789750
本文鏈接:http://sikaile.net/kejilunwen/wltx/1789750.html
最近更新
教材專著