基于CMMB與WiFi的室內(nèi)外無(wú)縫定位技術(shù)研究
本文選題:無(wú)縫定位 + 質(zhì)心估計(jì); 參考:《遼寧工業(yè)大學(xué)》2014年碩士論文
【摘要】:近年來(lái)在社會(huì)生活中,,無(wú)縫定位技術(shù)的應(yīng)用得到了廣泛的發(fā)展,其應(yīng)用涉及到了安全服務(wù)、位置管理與導(dǎo)航等方面,對(duì)滿足移動(dòng)通信用戶全域定位導(dǎo)航需求、導(dǎo)航定位技術(shù)的發(fā)展具有重大的意義。移動(dòng)廣播網(wǎng)采用的OFDM調(diào)制技術(shù),能夠有效地削弱多徑效應(yīng),具有良好的時(shí)間同步測(cè)距精度。室內(nèi)WiFi技術(shù)具有信息傳輸速度快,成本低,定位精度高的優(yōu)點(diǎn)。結(jié)合兩者的優(yōu)勢(shì),可以實(shí)現(xiàn)CMMB與WiFi的覆蓋區(qū)域的無(wú)縫定位。本文對(duì)室內(nèi)外無(wú)縫定位技術(shù)進(jìn)行了研究,研究的主要內(nèi)容為以下三個(gè)方面。 首先,分析了室內(nèi)基于WiFi定位技術(shù)的定位原理、定位方法,研究了室外CMMB的信道傳播模型、基于TDOA的定位模型及其基本定位算法。在室外定位中提出了一種基于CMMB的TOA/TDOA的融合定位算法,算法利用改進(jìn)的Taylor算法對(duì)TOA的位置估計(jì)值與Chan算法對(duì)TDOA的估計(jì)值進(jìn)行質(zhì)心估計(jì),得到最終的估計(jì)值。仿真結(jié)果表明該算法提高了定位精度,能夠有效地抑制NLOS誤差,而且算法易于工程實(shí)現(xiàn)。 其次,分析了WiFi無(wú)線電信號(hào)傳播路徑損耗模型,主要是自由空間傳播模型、對(duì)數(shù)-常態(tài)分布模型以及簡(jiǎn)化模型;提出一種基于WiFi接收信號(hào)強(qiáng)度的無(wú)縫定位區(qū)域判定方法。判定方法的核心在于建立一個(gè)基于環(huán)境損耗系數(shù)的閾值函數(shù),使判定方法在任何環(huán)境下都能夠通過(guò)接收的信號(hào)強(qiáng)度與閾值的比較來(lái)確定目標(biāo)所在的區(qū)域,從而選擇合適的定位算法進(jìn)行有效地定位。 最后,研究無(wú)縫定位的實(shí)現(xiàn)方案與關(guān)鍵技術(shù),針對(duì)在室內(nèi)外交互區(qū)的無(wú)縫定位,提出了一種CMMB與WiFi的無(wú)縫融合定位算法。算法綜合CMMB測(cè)量得到的TDOA觀測(cè)數(shù)據(jù)和WiFi測(cè)量得到的RSSI數(shù)據(jù),對(duì)處于室內(nèi)外交互區(qū)的目標(biāo)用戶進(jìn)行位置定位。本文針對(duì)算法進(jìn)行了仿真分析,仿真結(jié)果表明算法能夠?qū)崿F(xiàn)在室內(nèi)外交互區(qū)的定位,而且組合融合定位算法比單一的定位技術(shù)定位精度高。
[Abstract]:In recent years, the application of seamless positioning technology has been widely developed in the social life. Its application involves security services, location management and navigation, and meets the needs of global positioning and navigation of mobile communication users. The development of navigation and positioning technology is of great significance. The OFDM modulation technology used in the mobile broadcasting network can effectively reduce the multipath effect and has a good time synchronous ranging accuracy. Indoor WiFi technology has the advantages of fast information transmission, low cost and high positioning accuracy. Combining the advantages of the two, we can realize the seamless location of the coverage area of CMMB and WiFi. In this paper, the indoor and outdoor seamless positioning technology is studied, the main content of the study is the following three aspects. Firstly, the principle and method of indoor CMMB location based on WiFi technology are analyzed, and the channel propagation model of outdoor CMMB, the location model based on TDOA and its basic localization algorithm are studied. A fusion localization algorithm of TOA/TDOA based on CMMB is proposed in the outdoor location. The improved Taylor algorithm is used to estimate the location of TOA and the Chan algorithm to estimate the centroid of TDOA, and the final estimated value is obtained. The simulation results show that the algorithm improves the positioning accuracy and can effectively suppress the NLOS error, and the algorithm is easy to be implemented in engineering. Secondly, the propagation path loss model of WiFi radio signal is analyzed, including free space propagation model, logarithmic normal distribution model and simplified model, and a method of determining seamless location region based on WiFi received signal strength is proposed. The core of the decision method is to establish a threshold function based on the environmental loss coefficient, so that the decision method can determine the region of the target by comparing the received signal strength with the threshold value in any environment. Thus, the appropriate location algorithm is chosen to locate effectively. Finally, the realization scheme and key technology of seamless positioning are studied, and a seamless fusion localization algorithm of CMMB and WiFi is proposed for the seamless localization in the interaction area between indoor and outdoor. The algorithm combines the TDOA data obtained from CMMB measurement and RSSI data from WiFi measurement to locate the target user in the indoor and outdoor interaction area. The simulation results show that the algorithm can realize the localization in the indoor and outdoor interaction area, and the combined fusion localization algorithm is more accurate than the single localization technology.
【學(xué)位授予單位】:遼寧工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN934;TN92
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何峰;吳樂(lè)南;;基于數(shù)字電視無(wú)線廣播信號(hào)的定位模型和系統(tǒng)[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年05期
2 楊榮華;牛瑞芳;孫小芳;;偽衛(wèi)星增強(qiáng)GPS定位技術(shù)及其應(yīng)用研究[J];大眾科技;2008年06期
3 邱根生;;一種基于WLAN指紋識(shí)別的無(wú)線定位中提高定位精度的方法[J];福建電腦;2011年06期
4 林基明,劉涓,王玫,鄭繼禹;非視距傳播環(huán)境下的一種TDOA定位算法[J];桂林電子工業(yè)學(xué)院學(xué)報(bào);2004年05期
5 付承彪;田安紅;楊華芬;;淺談無(wú)縫定位技術(shù)[J];楚雄師范學(xué)院學(xué)報(bào);2012年09期
6 馬燕;袁蔚林;陳秀萬(wàn);許玉斌;孫華波;;基于WiFi與GPS組合定位算法的無(wú)縫定位方法研究[J];地理與地理信息科學(xué);2013年03期
7 張寶軍;毛永毅;;基于RBF神經(jīng)網(wǎng)絡(luò)的泰勒級(jí)數(shù)展開定位算法[J];計(jì)算機(jī)工程與應(yīng)用;2009年15期
8 武昊然;;GPS和無(wú)線傳感器網(wǎng)絡(luò)融合定位算法研究[J];計(jì)算機(jī)仿真;2009年11期
9 蘇凱;曹元;李俊;潘金貴;;基于UWB和DGPS的混合定位方法研究[J];計(jì)算機(jī)應(yīng)用與軟件;2010年05期
10 張威奕;陳秀萬(wàn);李穎;李智慧;;基于GPS和Zigbee融合的無(wú)縫定位方法研究[J];寧夏大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
本文編號(hào):1778402
本文鏈接:http://sikaile.net/kejilunwen/wltx/1778402.html