基于表面肌電信號(hào)的生物醫(yī)學(xué)人機(jī)接口研究
發(fā)布時(shí)間:2018-04-13 08:42
本文選題:康復(fù)設(shè)備 + 肌電信號(hào); 參考:《河北聯(lián)合大學(xué)》2014年碩士論文
【摘要】:表面肌電信號(hào)(sEMG)是人體主動(dòng)運(yùn)動(dòng)的時(shí)候,在肌肉的表面用表面電極采集得到的生物信號(hào),它能夠在一定程度上反映神經(jīng)肌肉的活動(dòng)。sEMG具有無(wú)創(chuàng)性、實(shí)時(shí)性、操作簡(jiǎn)單等優(yōu)點(diǎn),因此,它在多個(gè)領(lǐng)域獲得越來(lái)越多的應(yīng)用。通過(guò)提取sEMG信號(hào)的特征,借助于肌肉、骨肌生理學(xué)模型,來(lái)識(shí)別肌肉的運(yùn)動(dòng)狀態(tài)和肢體的運(yùn)動(dòng)意圖,以此控制智能設(shè)備是一種新的人機(jī)接口技術(shù)。目前,國(guó)內(nèi)對(duì)這種人機(jī)接口方面的相關(guān)研究較少。本課題嘗試在這方面做一些具體工作,并用其預(yù)測(cè)肘關(guān)節(jié)的運(yùn)動(dòng)趨勢(shì)作為人機(jī)接口的實(shí)例。 在分析了上肢骨肌系統(tǒng)生理結(jié)構(gòu)的基礎(chǔ)上,首先建立了上肢的肌肉模型、骨肌模型和運(yùn)動(dòng)學(xué)模型,在模型中,充分考慮了由于肌肉的粘性產(chǎn)生的被動(dòng)阻尼力以及考慮了關(guān)節(jié)的滑膜、韌帶等成分產(chǎn)生的整體被動(dòng)力,使模型更加完整。對(duì)肌肉激活度進(jìn)行了分析,給出了模型中主要參數(shù)的獲取方法。 分析了肌電信號(hào)的特點(diǎn),選取了人機(jī)接口系統(tǒng)硬件,包括表面肌電信號(hào)傳感器、數(shù)據(jù)采集儀和關(guān)節(jié)角采集設(shè)備。并進(jìn)行了采集實(shí)驗(yàn)。對(duì)采集的表面肌電信號(hào)采用濾波、整流、包絡(luò)的方法進(jìn)行了信號(hào)特征的提取。采用Matlab/Simulink工具設(shè)計(jì)了仿真程序,獲取了信號(hào)的激活度信息。 利用Opensim仿真軟件進(jìn)行了生物模型的仿真實(shí)驗(yàn),通過(guò)仿真計(jì)算得到了預(yù)測(cè)的肘關(guān)節(jié)角度,并與實(shí)測(cè)的角度進(jìn)行了比較,對(duì)生物模型進(jìn)行了進(jìn)一步調(diào)節(jié)。對(duì)關(guān)節(jié)力矩、肌肉力、肌肉力臂、肌纖維長(zhǎng)度等仿真輸出結(jié)果進(jìn)行了分析,結(jié)果與實(shí)測(cè)或其他文獻(xiàn)的數(shù)據(jù)有對(duì)比性,進(jìn)一步證實(shí)了所建模型的準(zhǔn)確性。 為了驗(yàn)證所設(shè)計(jì)的人機(jī)接口的正確性,,設(shè)計(jì)了一款具有前臂屈/伸、前臂旋內(nèi)/旋外的二自由度的康復(fù)訓(xùn)練機(jī)器人,并使用Pro/E軟件建立了虛擬樣機(jī)。此裝置結(jié)構(gòu)緊湊,肢體固定部分長(zhǎng)度可調(diào),安全,成本低?傊亓繛3kg,可以穿戴在患者身上。
[Abstract]:Surface electromyography (SEMG) is a biological signal collected from the surface electrode of the muscle when the human body moves actively. It can reflect the neuromuscular activity to a certain extent. The SEMG has the advantages of noninvasive, real-time and simple operation.Therefore, it has gained more and more applications in many fields.It is a new man-machine interface technology to identify the movement state of muscle and the motion intention of limbs by extracting the characteristics of sEMG signal and using the physiological model of muscle and bone muscle to control the intelligent device.At present, the domestic research on this kind of man-machine interface is less.This paper tries to do some concrete work in this field and uses it to predict the movement trend of elbow joint as an example of man-machine interface.Based on the analysis of the physiological structure of the upper limb skeletal muscle system, the muscle model, the bone muscle model and the kinematics model of the upper limb are established.The passive damping force due to the viscosity of the muscle and the integral force generated by the synovium and ligaments of the joint are fully considered to make the model more complete.The muscle activation degree is analyzed, and the method of obtaining the main parameters in the model is given.The characteristics of EMG signal are analyzed, and the hardware of man-machine interface system is selected, including surface EMG sensor, data acquisition instrument and joint angle acquisition equipment.A collection experiment was carried out.The collected surface EMG signals are extracted by filtering, rectifying and envelope methods.The simulation program is designed with Matlab/Simulink tool, and the signal activation information is obtained.The simulation experiment of biological model is carried out by using Opensim software. The predicted angle of elbow joint is calculated by simulation, and compared with the measured angle, and the biological model is further adjusted.The simulation results of joint torque, muscle force, muscle arm and muscle fiber length are analyzed. The results are compared with the measured data or other literature data, which further confirm the accuracy of the model.In order to verify the correctness of the designed man-machine interface, a rehabilitation training robot with flexion / extension of forearm and two degrees of freedom in / out of forearm is designed, and a virtual prototype is built by using Pro/E software.The device has compact structure, adjustable length of limb fixed part, safety and low cost.The total weight is 3 kg and can be worn on the patient.
【學(xué)位授予單位】:河北聯(lián)合大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 楊銀兒;馬楚虹;錢永東;戴燕;;不同肌力訓(xùn)練時(shí)攀巖運(yùn)動(dòng)員腕伸屈肌的表面肌電頻譜特征研究[J];安徽體育科技;2006年06期
2 王成燾;;中國(guó)力學(xué)虛擬人[J];醫(yī)用生物力學(xué);2006年03期
3 曲峰,張英,佟海青;全國(guó)100m跑比賽冠軍周偉破紀(jì)錄前后肌電信號(hào)的分形分析[J];中國(guó)體育科技;2000年05期
相關(guān)博士學(xué)位論文 前1條
1 伊蕾;助行康復(fù)機(jī)器人控制策略研究[D];哈爾濱工程大學(xué);2012年
本文編號(hào):1743749
本文鏈接:http://sikaile.net/kejilunwen/wltx/1743749.html
最近更新
教材專著