多維參數(shù)估計(jì)的快速算法研究
發(fā)布時(shí)間:2018-04-06 01:02
本文選題:二維DOA快速算法 切入點(diǎn):L陣 出處:《電子科技大學(xué)》2014年碩士論文
【摘要】:利用平面陣列估計(jì)多信號(hào)的二維DOA(Direction-of-Arrival)參數(shù)在許多軍事及國民經(jīng)濟(jì)領(lǐng)域具有重要作用,比如聲吶,雷達(dá)和通信等。由于二維DOA維數(shù)的增加,DOA估計(jì)過程的計(jì)算量主要受陣列結(jié)構(gòu)以及對(duì)估計(jì)的俯仰角和方位角配對(duì)的影響,然而傳統(tǒng)的配對(duì)算法主要是通過二維搜索和求解非線性優(yōu)化問題得到的,計(jì)算比較復(fù)雜。因此本文圍繞算法的計(jì)算量等問題,主要研究基于L陣的二維DOA參數(shù)估計(jì)算法,重點(diǎn)研究了以下幾個(gè)方面的內(nèi)容:1、研究了陣列的接收模型,以及各種平面陣列天線的延遲和相位計(jì)算的區(qū)別;同時(shí)簡(jiǎn)單介紹了MUSIC(Multiple Signal Classification)算法、ESPRIT(Estimate Signal Parameters via Rotational Invariant Techniques)算法、PM(Propagator Method)算法和MSWF(Multi-Stage Wiener Filter)算法,對(duì)上述1-D DOA估計(jì)算法進(jìn)行對(duì)比仿真,分析了上述算法計(jì)算復(fù)雜度和角度估計(jì)的性能,同時(shí)指出了在1-D DOA估計(jì)算法中減少算法計(jì)算量的實(shí)現(xiàn)方法。2、研究了利用L陣來估計(jì)窄帶信號(hào)二維到達(dá)角的算法,包括利用自相關(guān)矩陣的修正的PM和CCM-ESPRIT(Cross-Correlation Matrix based on ESPRIT)算法,以及利用互相關(guān)矩陣的JSVD(Joint Singular Value Decomposition)和CODE(Computationally efficient cross-correlation based 2-D DOA Estimation)算法,對(duì)上述算法的由來以及性能給出了解釋并分析每個(gè)算法的計(jì)算復(fù)雜度,同時(shí)關(guān)注了在算法中存在的問題;最后提出了一種利用MSWF快速估計(jì)特征子空間的算法,該算法針對(duì)互相關(guān)矩陣進(jìn)行角度估計(jì),無需譜峰搜索和SVD,計(jì)算復(fù)雜度較低,同時(shí)算法可自行配對(duì),算法的實(shí)時(shí)性較好,有利于工程應(yīng)用。3、針對(duì)寬帶線性調(diào)頻信號(hào)(Linear Frequency Modulation,LFM)的多維參數(shù)估計(jì),以及LFM信號(hào)在分?jǐn)?shù)階傅里葉變換(Fractional Fourier Transform,FRFT)的特性,使用分?jǐn)?shù)階傅里葉變換估計(jì)出初始頻率和調(diào)頻斜率;同時(shí)在LFM信號(hào)的解線調(diào)FRFT域上提出了利用PM和MSWF估計(jì)DOA的快速算法,上述算法無需EVD(Eigen-Value Decomposition)或SVD,雖然估計(jì)角度精度有所損失,但算法的計(jì)算復(fù)雜度低于基于EVD的估計(jì)算法。最后本文通過上述研究和仿真實(shí)驗(yàn)得到一些很有參考意義的結(jié)論,對(duì)陣列信號(hào)處理中的多維參數(shù)估計(jì)的快速算法有一定的借鑒意義。
[Abstract]:Using planar array to estimate multi-signal 2-D DOA Direction-of-Arrival (DOA) parameters plays an important role in many military and national economic fields such as sonar radar and communication.Due to the increase of two-dimensional DOA dimension, the computational complexity of the estimation process is mainly affected by the array structure and the pairing of pitch and azimuth angles. However, the traditional pairing algorithm is mainly obtained by two-dimensional searching and solving nonlinear optimization problems.The calculation is more complicated.Therefore, this paper mainly studies the algorithm of 2-D DOA parameter estimation based on L-matrix, focusing on the following aspects: 1, the receiving model of the array.At the same time, the paper introduces the MUSIC(Multiple Signal classification algorithm, the estimation Signal Parameters via Rotational Invariant Techniques-Esprit algorithm and the MSWF(Multi-Stage Wiener filter algorithm, and compares and simulates the 1-D DOA estimation algorithm mentioned above, and introduces the difference between the delay and phase calculation of various planar array antennas, and gives a brief introduction to the MUSIC(Multiple Signal classification algorithm, the estimation Signal Parameters via Rotational Invariant Techniques-algorithm, and the MSWF(Multi-Stage Wiener filter algorithm, and compares and simulates the above 1-D DOA estimation algorithm.The computational complexity and angle estimation performance of the above algorithms are analyzed. At the same time, the realization method of reducing the computational load in the 1-D DOA estimation algorithm is pointed out, and the algorithm of estimating the two-dimensional arrival angle of narrowband signals by using L matrix is studied.It includes modified PM and CCM-ESPRIT(Cross-Correlation Matrix based on Esprit algorithm using autocorrelation matrix, JSVD(Joint Singular Value decompositiontion using cross-correlation matrix and CODE(Computationally efficient cross-correlation based 2-D DOA estimation algorithm.The origin and performance of these algorithms are explained and analyzed, and the computational complexity of each algorithm is analyzed. At last, an algorithm using MSWF to estimate feature subspace is proposed.Based on the angle estimation of cross-correlation matrix, the algorithm does not need spectral peak search and SVD, and its computational complexity is low. Meanwhile, the algorithm can be matched by itself, and the algorithm has better real-time performance.In view of the multidimensional parameter estimation of linear Frequency modulation (LFM) for wideband LFM signals and the characteristics of LFM signals in fractional Fourier transform (Fractional Fourier transform), the initial frequency and frequency modulation slope are estimated by fractional Fourier transform.At the same time, a fast DOA estimation algorithm based on PM and MSWF is proposed in the FRFT domain of LFM signal unalignment. These algorithms do not need EVD(Eigen-Value decomposition.Although the estimation angle accuracy is lost, the computational complexity of the algorithm is lower than that of the EVD based estimation algorithm.Finally, through the above research and simulation experiments, some useful conclusions are obtained, which can be used for reference in the fast algorithm of multi-dimension parameter estimation in array signal processing.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN911.23
【參考文獻(xiàn)】
相關(guān)博士學(xué)位論文 前1條
1 黃磊;快速子空間估計(jì)方法研究及其在陣列信號(hào)處理中的應(yīng)用[D];西安電子科技大學(xué);2005年
,本文編號(hào):1717250
本文鏈接:http://sikaile.net/kejilunwen/wltx/1717250.html
最近更新
教材專著