基于魚眼攝像頭的網(wǎng)絡(luò)監(jiān)控系統(tǒng)研究
發(fā)布時(shí)間:2018-03-29 18:38
本文選題:魚眼圖像 切入點(diǎn):畸變校正 出處:《寧波大學(xué)》2015年碩士論文
【摘要】:最近幾年,伴隨通信技術(shù)、計(jì)算機(jī)技術(shù)和多媒體編解碼技術(shù)的進(jìn)步,視頻監(jiān)控技術(shù)獲得快速發(fā)展,并在人們生產(chǎn)生活的各個(gè)方面得到廣泛應(yīng)用,已經(jīng)涉及到學(xué)校、政府部門、金融系統(tǒng)、交通、醫(yī)療系統(tǒng)、大型工廠等領(lǐng)域。隨著其不斷擴(kuò)大的市場應(yīng)用,新的需求隨之產(chǎn)生,比如大范圍無盲區(qū)實(shí)時(shí)監(jiān)控。傳統(tǒng)監(jiān)控鏡頭因其視角范圍較小,要實(shí)現(xiàn)大范圍內(nèi)的實(shí)時(shí)無盲區(qū)監(jiān)控,需要機(jī)械地轉(zhuǎn)動(dòng)單個(gè)鏡頭或者對(duì)多個(gè)鏡頭捕捉的畫面進(jìn)行拼接。上述方案不可避免的導(dǎo)致攝像頭數(shù)量的增加、多鏡頭曝光時(shí)間調(diào)節(jié)難度加大等問題。魚眼鏡頭焦距短,達(dá)到甚至超過180°視角的優(yōu)勢,使其成為大視場無盲區(qū)實(shí)時(shí)監(jiān)控系統(tǒng)中的最佳選擇。本文在監(jiān)控端選取魚眼鏡頭作為監(jiān)控?cái)z像頭,該魚眼鏡頭吸頂安裝后,可以獲取水平方向360°以及垂直方向180°范圍內(nèi)的場景信息,搭建網(wǎng)絡(luò)視頻監(jiān)控系統(tǒng),在客戶機(jī)上接收來自網(wǎng)絡(luò)的流媒體數(shù)據(jù)并解碼、畸變校正處理和顯示。本文內(nèi)容有以下部分:(1)首先介紹了本課題的研究背景、意義和現(xiàn)狀;(2)論述網(wǎng)絡(luò)監(jiān)控系統(tǒng)的總體框架及方案;(3)通過分析魚眼鏡頭成像原理,并對(duì)幾種魚眼畸變校正算法進(jìn)行仿真和分析,從而提出建立一種新的校正模型的必要性;(4)提出本課題改進(jìn)的校正算法,包括特征點(diǎn)的提取和偽特征點(diǎn)剔除,模型的建立,圖像的插值,以及校正后圖像的展開模式;(5)論述網(wǎng)絡(luò)傳輸部分相關(guān)技術(shù),包含網(wǎng)絡(luò)傳輸協(xié)議的選擇以及網(wǎng)絡(luò)體系結(jié)構(gòu)的布局;(6)基于Directshow技術(shù)的客戶端設(shè)計(jì),包括視頻流的接收、解碼、全景展開模式程序設(shè)計(jì)和小視角顯示模式的程序設(shè)計(jì);(7)實(shí)驗(yàn)結(jié)果的展示,工作總結(jié)和進(jìn)一步的展望。實(shí)驗(yàn)結(jié)果表明,對(duì)分辨率為1600*1200的魚眼圖像,采用本課題的方法后校正效果較好,而且單幀圖像處理時(shí)間小于35毫秒,使得視頻能夠流暢展示,達(dá)到了實(shí)時(shí)性。同時(shí)通過人機(jī)交互,實(shí)現(xiàn)了場景漫游,并使校正后的圖像以不同的展開模式呈現(xiàn)出來,達(dá)到了預(yù)期結(jié)果。
[Abstract]:In recent years, with the development of communication technology, computer technology and multimedia coding and decoding technology, video surveillance technology has been rapidly developed, and has been widely used in all aspects of people's production and life, has been involved in schools, government departments, Financial systems, transportation, medical systems, large factories, and so on. With its expanding market applications, new needs arise, such as real-time surveillance in a wide range of blind areas. In order to realize real-time blind area monitoring on a large scale, it is necessary to rotate a single lens mechanically or to splice the images captured by multiple lenses. The above scheme inevitably leads to an increase in the number of cameras. It is difficult to adjust multi-lens exposure time and so on. The focal length of fish-eye lens is short, reaching or even exceeding 180 擄angle of view. In this paper, the fish-eye lens is selected as the surveillance camera at the monitoring end, and the fish-eye lens is installed after absorbing the top of the camera. It can obtain scene information in the range of 360 擄horizontal and 180 擄vertical direction, set up a network video surveillance system, receive streaming media data from the network on the client and decode it. Distortion Correction processing and display. The content of this paper is as follows: 1) first of all, the research background, significance and status quo of this subject are introduced. (2) the overall framework and scheme of network monitoring system are discussed. (3) the principle of fish-eye lens imaging is analyzed. Several algorithms for correction of fish-eye distortion are simulated and analyzed, and the necessity of establishing a new correction model is put forward. (4) the improved correction algorithm is proposed, including feature point extraction and pseudo-feature point elimination, and the establishment of model. The interpolation of image and the unwrapping mode of corrected image are discussed in this paper, including the selection of network transmission protocol and the layout of network architecture. The client design based on Directshow technology, including the receiving of video stream, is discussed. Decoding, panoramic development mode programming and program design for small view display mode.) display of experimental results, summary of work and further prospects. The experimental results show that, for fish-eye images with a resolution of 1600 ~ 1200, The correction effect of this method is good, and the processing time of single frame image is less than 35 milliseconds, which makes the video display smoothly and achieves real time. At the same time, the scene roaming is realized through man-machine interaction. The corrected images are presented in different expansion modes, and the expected results are achieved.
【學(xué)位授予單位】:寧波大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TP391.41;TN948.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 張景國;蔣大鋼;李曉峰;;廣角鏡頭桶形畸變的二元二次多項(xiàng)式修正法[J];光學(xué)技術(shù);2010年04期
2 周輝;羅飛;李慧娟;馮炳樞;;基于柱面模型的魚眼影像校正方法的研究[J];計(jì)算機(jī)應(yīng)用;2008年10期
相關(guān)碩士學(xué)位論文 前1條
1 韓明;嵌入式視頻監(jiān)控系統(tǒng)的研究和實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
,本文編號(hào):1682351
本文鏈接:http://sikaile.net/kejilunwen/wltx/1682351.html
最近更新
教材專著