基于PSO-BP的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法研究
本文選題:數(shù)據(jù)融合 切入點(diǎn):無(wú)線傳感器網(wǎng)絡(luò) 出處:《計(jì)算機(jī)測(cè)量與控制》2014年04期
【摘要】:為提高無(wú)線傳感器網(wǎng)絡(luò)(WSN)數(shù)據(jù)融合效率,減少網(wǎng)絡(luò)的通信量以及降低傳感網(wǎng)的能量消耗,提出一種基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法;該算法將粒子群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值后,與傳感器網(wǎng)絡(luò)分簇路由協(xié)議有機(jī)結(jié)合,將無(wú)線傳感器網(wǎng)絡(luò)中簇頭和節(jié)點(diǎn)等同于BP神經(jīng)網(wǎng)絡(luò)里的神經(jīng)元,利用優(yōu)化后的BP神經(jīng)網(wǎng)絡(luò)有效地提取WSN數(shù)據(jù)融合原始數(shù)據(jù)之中的少量特征數(shù)據(jù),之后把提取的特征數(shù)據(jù)發(fā)送到匯聚節(jié)點(diǎn),進(jìn)而提升數(shù)據(jù)融合效率,延長(zhǎng)網(wǎng)絡(luò)生存周期;仿真實(shí)驗(yàn)證明,與LEACH算法、BP神經(jīng)網(wǎng)絡(luò)和GABP算法相比,該算法可有效減少網(wǎng)絡(luò)通信量,降低節(jié)點(diǎn)總能耗的15%,延長(zhǎng)網(wǎng)絡(luò)生存時(shí)間。
[Abstract]:In order to improve the data fusion efficiency of wireless sensor networks (WSNs), reduce the network traffic and reduce the energy consumption of wireless sensor networks, a data fusion algorithm based on particle swarm optimization BP neural network (PSO) for wireless sensor networks (WSN) is proposed. After optimizing the weight and threshold of BP neural network by particle swarm optimization, the algorithm combines with the clustering routing protocol of sensor network, and equates the cluster head and node in wireless sensor network with the neuron in BP neural network. The optimized BP neural network is used to effectively extract a small amount of feature data from the original data of WSN data fusion, and then send the extracted feature data to the convergence node to improve the efficiency of data fusion and prolong the lifetime of the network. The simulation results show that compared with LEACH algorithm and GABP algorithm, the proposed algorithm can effectively reduce the network traffic, reduce the total energy consumption of nodes and prolong the network lifetime.
【作者單位】: 河南城建學(xué)院計(jì)算機(jī)科學(xué)與工程學(xué)院;
【基金】:河南省科技廳基金項(xiàng)目(102102210020)
【分類(lèi)號(hào)】:TP212.9;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 李志宇;史浩山;;一種基于網(wǎng)格和移動(dòng)代理的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法[J];傳感技術(shù)學(xué)報(bào);2008年07期
2 孫凌逸;黃先祥;蔡偉;夏梅尼;;基于神經(jīng)網(wǎng)絡(luò)的無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法[J];傳感技術(shù)學(xué)報(bào);2011年01期
3 康健;左憲章;唐力偉;張西紅;李浩;;無(wú)線傳感器網(wǎng)絡(luò)數(shù)據(jù)融合技術(shù)[J];計(jì)算機(jī)科學(xué);2010年04期
4 萬(wàn)傳飛;杜尚豐;;無(wú)線傳感器網(wǎng)絡(luò)LEACH算法的改進(jìn)與仿真[J];計(jì)算機(jī)應(yīng)用與軟件;2011年04期
5 夏文杰;楊建武;李屹;李昆;;Quasi-Newton BP神經(jīng)網(wǎng)絡(luò)算法在電梯急停故障診斷中的應(yīng)用[J];計(jì)算機(jī)測(cè)量與控制;2011年01期
6 李松;劉力軍;翟曼;;改進(jìn)粒子群算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的短時(shí)交通流預(yù)測(cè)[J];系統(tǒng)工程理論與實(shí)踐;2012年09期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭愛(ài)平;郭曉松;蔡偉;徐曉淼;;基于估計(jì)機(jī)制的分簇傳感器網(wǎng)絡(luò)數(shù)據(jù)融合算法[J];傳感技術(shù)學(xué)報(bào);2011年01期
2 曹秀嵐;吳杰;米新磊;田裕鵬;周克印;;基于多傳感器融合的無(wú)線感知狀態(tài)監(jiān)測(cè)[J];傳感技術(shù)學(xué)報(bào);2011年12期
3 潘o,
本文編號(hào):1659705
本文鏈接:http://sikaile.net/kejilunwen/wltx/1659705.html