引入?yún)⒖夹盘?hào)的新峭度快速不動(dòng)點(diǎn)算法
發(fā)布時(shí)間:2018-03-22 13:07
本文選題:盲源分離 切入點(diǎn):獨(dú)立成分分析 出處:《信號(hào)處理》2014年12期 論文類型:期刊論文
【摘要】:在盲源分離和獨(dú)立成分分析中,峭度是衡量隨機(jī)信號(hào)非高斯性的常用對(duì)比準(zhǔn)則,通過不同類型的算法對(duì)其進(jìn)行優(yōu)化,找到非高斯性極大值點(diǎn),即實(shí)現(xiàn)了源信號(hào)的提取或分離。例如,基于峭度的快速不動(dòng)點(diǎn)算法,它是一種收斂速度很快的算法。最近,Marc Castella等人提出了一類基于所謂"參考信號(hào)"的對(duì)比準(zhǔn)則,以及對(duì)應(yīng)的梯度最大化優(yōu)化算法,這些算法具有很好的收斂性能。受其啟發(fā),文章以一種類似的方式將"參考信號(hào)"思想應(yīng)用到峭度中,得到一種新穎的對(duì)比函數(shù),并基于該新峭度對(duì)比函數(shù),提出了一種新的快速不動(dòng)點(diǎn)算法。與經(jīng)典的基于峭度的快速不動(dòng)點(diǎn)算法相比,該算法極大地提高了收斂速度,尤其是隨著信號(hào)樣值點(diǎn)數(shù)的增加,該算法的優(yōu)勢(shì)會(huì)更加明顯。文章分析和證明了該新峭度對(duì)比函數(shù)的局部收斂性,給出了新算法的詳細(xì)推導(dǎo)過程,仿真實(shí)驗(yàn)驗(yàn)證了該算法的性能,并與經(jīng)典算法進(jìn)行了比較分析。
[Abstract]:In blind source separation and independent component analysis (ICA), kurtosis is a common contrast criterion to measure the non-#china_person0# character of random signals. For example, the fast fixed point algorithm based on kurtosis is a fast convergence algorithm. Recently, Marc Castella et al proposed a kind of comparison criterion based on so-called "reference signal". These algorithms have good convergence performance. Inspired by these algorithms, this paper applies the idea of "reference signal" to kurtosis in a similar way, and obtains a novel contrast function. Based on the new kurtosis contrast function, a new fast fixed point algorithm is proposed. Compared with the classical fast fixed point algorithm based on kurtosis, this algorithm greatly improves the convergence rate, especially with the increase of signal sample points. This paper analyzes and proves the local convergence of the new kurtosis contrast function, gives the detailed derivation process of the new algorithm, and verifies the performance of the algorithm by simulation, and compares it with the classical algorithm.
【作者單位】: 解放軍理工大學(xué)通信工程學(xué)院;國(guó)防信息學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61172061) 江蘇省自然科學(xué)基金資助項(xiàng)目(BK2011117)
【分類號(hào)】:TN911.7
,
本文編號(hào):1648779
本文鏈接:http://sikaile.net/kejilunwen/wltx/1648779.html
最近更新
教材專著