基于Zigbee-GPRS的無(wú)線網(wǎng)絡(luò)水情監(jiān)測(cè)系統(tǒng)
本文選題:Zigbee 切入點(diǎn):GPRS 出處:《太原理工大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:物聯(lián)網(wǎng)作為時(shí)下的新興科技,隨著對(duì)其研究和應(yīng)用的廣泛發(fā)展,備受世界各國(guó)科技人的青睞。物聯(lián)網(wǎng)首先是將實(shí)際環(huán)境中需要監(jiān)控、連接與互動(dòng)的物體組建成一個(gè)無(wú)線傳感網(wǎng)絡(luò),然后利用各種終端信息采集設(shè)備,實(shí)時(shí)地檢測(cè)收集各種需要的信息,再與互聯(lián)網(wǎng)結(jié)合構(gòu)成一個(gè)巨大的線上與線下交互的通訊系統(tǒng),進(jìn)而實(shí)現(xiàn)物與物之間的網(wǎng)絡(luò)信息交互和共享。 引黃入晉工程是一項(xiàng)大型跨流域引水工程。該工程從黃河萬(wàn)家寨水庫(kù)取水,分別向太原、朔州和大同3個(gè)能源基地供水,以解決嚴(yán)重的缺水危機(jī)。由于這樣一個(gè)特定的工程應(yīng)用背景,一般很難通過(guò)架設(shè)有線設(shè)備來(lái)完成對(duì)水域?qū)崟r(shí)水情信息的監(jiān)測(cè)和數(shù)據(jù)的傳輸,在這種情況下,無(wú)線通信的優(yōu)勢(shì)顯得更加明顯。而且在被測(cè)環(huán)境中,需要測(cè)量水位、水壓等多項(xiàng)參數(shù),這就為多個(gè)測(cè)量點(diǎn)組建網(wǎng)絡(luò)提出了應(yīng)用需求。多個(gè)參數(shù)的測(cè)量往往集中在一定的區(qū)域范圍內(nèi),又為組建Zigbee無(wú)線傳感器網(wǎng)絡(luò)在通訊距離上提供了可行性。因此,我們結(jié)合Zigbee和GPRS的技術(shù)特性設(shè)計(jì)了一個(gè)基于Zigbee-GPRS的無(wú)線網(wǎng)絡(luò)水情監(jiān)測(cè)系統(tǒng)。 本文根據(jù)無(wú)線傳感器網(wǎng)絡(luò)的組成原理、通信協(xié)議和對(duì)引黃入晉工程被測(cè)環(huán)境中水情監(jiān)測(cè)需求的分析,設(shè)計(jì)了一個(gè)整體的硬件和軟件方案,并且進(jìn)行了實(shí)驗(yàn)驗(yàn)證和分析。該方案綜合了Zigbee的自組織、短距離、低功耗特性和GPRS的遠(yuǎn)程傳輸優(yōu)勢(shì),將各個(gè)水情檢測(cè)設(shè)備通過(guò)CC2530芯片設(shè)計(jì)成網(wǎng)絡(luò)終端采集節(jié)點(diǎn),在一定范圍內(nèi)實(shí)現(xiàn)星型拓?fù)浣Y(jié)構(gòu)組網(wǎng),再通過(guò)Zigbee協(xié)調(diào)器節(jié)點(diǎn)與GPRS模塊實(shí)現(xiàn)與上位機(jī)軟件的無(wú)線通訊,從而實(shí)現(xiàn)監(jiān)測(cè)區(qū)域內(nèi)的無(wú)線網(wǎng)絡(luò)水情監(jiān)測(cè)。軟件方面,設(shè)計(jì)了基于Labview的上位機(jī)監(jiān)測(cè)軟件,可以在線實(shí)時(shí)地監(jiān)測(cè)環(huán)境中的各個(gè)節(jié)點(diǎn)的參數(shù),并通過(guò)曲線圖表進(jìn)行顯示,同時(shí)將采集到的數(shù)據(jù)保存到數(shù)據(jù)庫(kù)中,以便于查詢和維護(hù)采集到的水情數(shù)據(jù)。 整個(gè)設(shè)計(jì)以無(wú)線傳感器網(wǎng)絡(luò)為基礎(chǔ),實(shí)現(xiàn)了現(xiàn)代化、網(wǎng)絡(luò)化的水情監(jiān)測(cè),具有一定的工程實(shí)際意義。經(jīng)過(guò)試驗(yàn)分析和驗(yàn)證,此系統(tǒng)能夠穩(wěn)定運(yùn)行,基本滿足了遠(yuǎn)程水情監(jiān)測(cè)的無(wú)線網(wǎng)絡(luò)化和現(xiàn)代智能化需求。通過(guò)整個(gè)系統(tǒng)的設(shè)計(jì),終端設(shè)備、互聯(lián)網(wǎng)與人有效的連接到了整個(gè)網(wǎng)絡(luò)中,實(shí)現(xiàn)了高質(zhì)量的信息共享服務(wù)。 通過(guò)對(duì)無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)部署模型的學(xué)習(xí)和分析,我們?cè)O(shè)計(jì)了一個(gè)基于鄰居節(jié)點(diǎn)平均距離的無(wú)線傳感器網(wǎng)絡(luò)覆蓋判別模型,此模型較傳統(tǒng)的網(wǎng)絡(luò)覆蓋模型可以更好地節(jié)約無(wú)線傳感器網(wǎng)絡(luò)中工作節(jié)點(diǎn)的數(shù)量。
[Abstract]:Internet of things (IOT) as a new technology, with the extensive development of its research and application, is favored by the scientific and technological people all over the world. Objects connected to and interacted with each other form a wireless sensor network, and then use various terminal information acquisition devices to detect and collect all kinds of information needed in real time, and then combine with the Internet to form a huge online and offline communication system. Then realize the network information exchange and sharing between things and objects. The Yellow River diversion Project is a large cross-basin water diversion project. The project draws water from the Wanjiazhai Reservoir of the Yellow River and supplies water to three energy bases, Taiyuan, Shuozhou and Datong, respectively. In order to solve the serious water shortage crisis. Because of such a specific engineering application background, it is generally difficult to complete the monitoring of real-time water regime information and the transmission of data through the erection of wired equipment. In this case, The advantages of wireless communication are more obvious. Moreover, in the measured environment, many parameters, such as water level, water pressure and so on, need to be measured. Therefore, the measurement of multiple parameters is often concentrated in a certain area, which provides the feasibility of constructing Zigbee wireless sensor network in communication distance. Combining the technical characteristics of Zigbee and GPRS, we design a wireless network hydrologic monitoring system based on Zigbee-GPRS. According to the composing principle of wireless sensor network, the communication protocol and the analysis of the water condition monitoring requirement in the measured environment of the Yellow River diversion Project, a whole hardware and software scheme is designed in this paper. The scheme integrates the advantages of self-organization, short distance, low power consumption and remote transmission of GPRS, and designs each hydrologic detection device into a network terminal acquisition node through CC2530 chip. In a certain range of star topology network, and then through the Zigbee coordinator node and GPRS module to achieve wireless communication with the host computer software, so as to achieve the monitoring of wireless network hydrological monitoring in the region. Software, The monitoring software of upper computer based on Labview is designed, which can monitor the parameters of each node in the environment in real time on line, and display it by curve chart, at the same time, the collected data can be saved to the database. To facilitate the query and maintenance of collected hydrological data. The whole design is based on wireless sensor network and realizes the modern and networked monitoring of water regime. It has certain engineering practical significance. After experimental analysis and verification, the system can run stably. Through the design of the whole system, the terminal equipment, the Internet and the person are effectively connected to the whole network, and the high quality information sharing service is realized. By studying and analyzing the node deployment model of wireless sensor network, we design a wireless sensor network coverage discriminant model based on the average distance of neighbor nodes. Compared with the traditional network coverage model, this model can save the number of working nodes in wireless sensor networks.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN92;TP274
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王釗;姜飛;趙河明;婁文忠;劉傳欽;王淑蘋;王楠;;ZigBee網(wǎng)絡(luò)中關(guān)于RSSI測(cè)距技術(shù)研究[J];測(cè)試技術(shù)學(xué)報(bào);2011年04期
2 陳立偉;楊建華;曹曉歡;賀寧;;物聯(lián)網(wǎng)架構(gòu)下的室內(nèi)環(huán)境監(jiān)控系統(tǒng)[J];電子科技大學(xué)學(xué)報(bào);2012年02期
3 陶丹;孫巖;陳后金;;視頻傳感器網(wǎng)絡(luò)中最壞情況覆蓋檢測(cè)與修補(bǔ)算法[J];電子學(xué)報(bào);2009年10期
4 占乃洲;邊少鋒;吳三元;;基于ZigBee無(wú)線網(wǎng)絡(luò)的海島環(huán)境監(jiān)測(cè)系統(tǒng)研究[J];艦船電子工程;2010年07期
5 張治斌;徐小玲;閻連龍;;基于Zigbee井下無(wú)線傳感器網(wǎng)絡(luò)的定位方法[J];煤炭學(xué)報(bào);2009年01期
6 韓華峰;杜克明;孫忠富;趙偉;陳冉;梁聚寶;;基于ZigBee網(wǎng)絡(luò)的溫室環(huán)境遠(yuǎn)程監(jiān)控系統(tǒng)設(shè)計(jì)與應(yīng)用[J];農(nóng)業(yè)工程學(xué)報(bào);2009年07期
7 王歡;邢藝蘭;王靜;王興會(huì);;基于Zigbee技術(shù)的電子導(dǎo)游定位系統(tǒng)的研究與設(shè)計(jì)[J];北華航天工業(yè)學(xué)院學(xué)報(bào);2013年01期
8 曹衛(wèi);董航飛;李宗寶;;GPRS技術(shù)在水利監(jiān)測(cè)系統(tǒng)中的應(yīng)用[J];排灌機(jī)械;2007年05期
9 江儒秀;林開顏;吳軍輝;楊學(xué)軍;;基于ZigBee技術(shù)的溫室群控系統(tǒng)的研究與設(shè)計(jì)[J];上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版);2008年05期
10 馬福昌;馮道訓(xùn);張英梅;張建國(guó);;ZigBee和GPRS技術(shù)在水文監(jiān)測(cè)系統(tǒng)中的應(yīng)用研究[J];水利水文自動(dòng)化;2008年01期
相關(guān)博士學(xué)位論文 前1條
1 屈巍;無(wú)線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位與覆蓋控制技術(shù)研究[D];東北大學(xué);2010年
,本文編號(hào):1639307
本文鏈接:http://sikaile.net/kejilunwen/wltx/1639307.html