基于表面等離子體狹縫波導(dǎo)的三次諧波研究
本文選題:表面等離子體狹縫波導(dǎo) 切入點(diǎn):三次諧波 出處:《哈爾濱工業(yè)大學(xué)》2014年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,中紅外波段光學(xué)憑借其在光通信和生物醫(yī)學(xué)傳感等領(lǐng)域的廣泛應(yīng)用激發(fā)了越來越多的研究興趣。三次諧波在中外紅領(lǐng)域的應(yīng)用主要包括帶內(nèi)光信噪比探測(cè),微米級(jí)器件幾何結(jié)構(gòu)成像,三維數(shù)據(jù)存儲(chǔ)和生物材料研究等。基于此,研究基于中紅外的高效三次諧波轉(zhuǎn)換器件是很有必要和有意義。本文對(duì)中紅外及三次諧波的基本原理和應(yīng)用進(jìn)行了簡(jiǎn)要回顧。通過對(duì)三次諧波的基本原理以及耦合模差分方程的推導(dǎo)和分析引出在波導(dǎo)器件中產(chǎn)生高效三次諧波的三個(gè)關(guān)鍵因素。一方面利用具有高三階非線性極化率的非線性介質(zhì)材料作為三次諧波產(chǎn)生的主要媒介;另一方面通過合理設(shè)計(jì)波導(dǎo)結(jié)構(gòu)參數(shù)實(shí)現(xiàn)泵浦波和三次諧波相位匹配;最后一方面設(shè)計(jì)特殊波導(dǎo)結(jié)構(gòu)調(diào)整高階模的電場(chǎng)分布實(shí)現(xiàn)大的泵浦-三次諧波模式重疊積分系數(shù)。經(jīng)過調(diào)研,表面等離子體狹縫波導(dǎo)結(jié)構(gòu)對(duì)光的限制和加強(qiáng)特性可以很好的同時(shí)滿足上述三方面要求。表面等離子體納米結(jié)構(gòu)除了能夠增強(qiáng)非線性效應(yīng),還能使非線性光學(xué)組件縮減至微米級(jí)別,有利于光器件芯片集成。用此類波導(dǎo)結(jié)構(gòu)輻射三次諧波,波導(dǎo)的非線性參數(shù)能通過調(diào)節(jié)波導(dǎo)的結(jié)構(gòu)參數(shù)合理控制;诒砻娴入x子體狹縫波導(dǎo)結(jié)構(gòu)特性和三次諧波工作原理,本文設(shè)計(jì)幾種特殊波導(dǎo)結(jié)構(gòu)實(shí)現(xiàn)高效三次諧波(中紅外到近紅外)轉(zhuǎn)換。首先本論文提出了兩種非對(duì)稱表面等離子體狹縫波導(dǎo)結(jié)構(gòu)。狹縫上層引入硅的主要目的包括兩方面。一方面,阻止上層金屬覆蓋層對(duì)DDMEBT聚合物中電場(chǎng)的影響,使得相位匹配能夠通過調(diào)節(jié)波導(dǎo)結(jié)構(gòu)參數(shù)實(shí)現(xiàn);另一方面,破壞高階模電場(chǎng)分布的對(duì)稱性,限制高階模電場(chǎng)的負(fù)電場(chǎng)分量分布在硅狹縫中,提高對(duì)應(yīng)的泵浦-三次諧波重疊積分系數(shù)。接著本論文利用混合狹縫波導(dǎo)結(jié)構(gòu)導(dǎo)模的特殊性實(shí)現(xiàn)了更高效率三次諧波產(chǎn)生。由于高階模負(fù)電場(chǎng)分量全部限制在硅平板中,三次諧波效率得到大大提高。基于非對(duì)稱表面等離子體狹縫波導(dǎo)和混合狹縫波導(dǎo)的研究,本論文提出了雙狹縫金屬波導(dǎo)結(jié)構(gòu),實(shí)現(xiàn)了較高三次諧波轉(zhuǎn)換效率,為未來設(shè)計(jì)金屬纖芯光纖提供理論指導(dǎo)。最后,本論文詳細(xì)研究了雙光子吸收效應(yīng)對(duì)三次諧波轉(zhuǎn)換效率的影響并提出解決方案。
[Abstract]:In recent years, due to its wide applications in optical communication and biomedical sensing, the mid-infrared band optics has aroused more and more research interests. The application of third-harmonic in the red field mainly includes in-band optical signal-to-noise ratio (SNR) detection. Micron device geometry imaging, 3D data storage, biomaterial research, etc. It is necessary and meaningful to study the high efficiency third harmonic converter based on middle infrared. The basic principle and application of middle infrared and third harmonic are briefly reviewed in this paper. The basic principle and coupling of third harmonic are briefly reviewed. The derivation and analysis of the combined mode difference equation lead to three key factors for the generation of high efficiency third harmonic in waveguide devices. On the one hand, the nonlinear dielectric material with high third order nonlinear polarizability is used as the main medium for the generation of third harmonic. On the other hand, the phase matching of pump wave and third harmonic is realized by reasonably designing waveguide structure parameters. Finally, a special waveguide structure is designed to adjust the electric field distribution of high order modes to achieve a large pump third harmonic mode overlap integral coefficient. The limiting and strengthening properties of the surface plasma slit waveguide structure can satisfy the above three requirements well. The surface plasma nanostructures can enhance the nonlinear effect. It can also reduce the nonlinear optical components to micron level, which is beneficial to the chip integration of optical devices. The nonlinear parameters of the waveguide can be reasonably controlled by adjusting the structural parameters of the waveguide. In this paper, several special waveguide structures are designed to achieve high efficiency third-harmonic (mid-infrared to near-infrared) conversion. Firstly, two kinds of asymmetric surface plasma slit waveguide structures are proposed. The main purpose of introducing silicon into the upper slit is silicon. There are two aspects. On the one hand, In order to prevent the influence of the upper metal coating on the electric field in the DDMEBT polymer, phase matching can be achieved by adjusting the waveguide structure parameters, on the other hand, the symmetry of the electric field distribution of the higher-order modes is destroyed. The distribution of the negative electric field components of the high-order mode electric field in the silicon slit is limited. The corresponding pump third harmonic overlapping integral coefficient is improved. Then, by using the particularity of the guide mode of the mixed slit waveguide structure, a higher efficiency third harmonic generation is realized. Because the high order mode negative electric field components are all confined to the silicon plate, the high order mode negative electric field component is limited to the silicon plate. The third harmonic efficiency has been greatly improved. Based on the research of asymmetric surface plasma slit waveguide and hybrid slit waveguide, this paper presents a dual-slit metal waveguide structure, which achieves a higher third harmonic conversion efficiency. It provides theoretical guidance for the design of metal-core fiber in the future. Finally, the effect of two-photon absorption effect on the third-harmonic conversion efficiency is studied in detail and a solution is proposed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類號(hào)】:TN814
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 一平;;激光基波、二次諧波、三次諧波高反射多層膜反射鏡[J];激光與紅外;1980年02期
2 完顏圣;在三次諧波顯微鏡中的樣品“發(fā)光”[J];激光與光電子學(xué)進(jìn)展;2000年05期
3 吳堅(jiān);消除電網(wǎng)三次諧波的必要與可能[J];電信工程技術(shù)與標(biāo)準(zhǔn)化;2004年04期
4 李海寧;張麗平;吳洪;李賢;丁良恩;;空氣中激光等離子體通道的三次諧波光譜特性研究[J];光譜學(xué)與光譜分析;2008年06期
5 馬馳,何鈺娟,魏曉峰,袁靜,駱永全,王建軍,粟敬欽;高功率高效率三次諧波二維數(shù)值模擬研究[J];強(qiáng)激光與粒子束;2000年S2期
6 李賢;王燕玲;周緒桂;徐世祥;丁良恩;;啁啾補(bǔ)償飛秒脈沖高效三次諧波產(chǎn)生[J];激光與光電子學(xué)進(jìn)展;2008年06期
7 ;相匹配惰性氣體混合物的1182埃輻射[J];激光與光電子學(xué)進(jìn)展;1973年10期
8 朱長(zhǎng)軍,秦元東,楊宏,龔旗煌;空氣中飛秒強(qiáng)激光三次諧波的產(chǎn)生[J];量子電子學(xué)報(bào);1999年06期
9 ;相干光窄錐體產(chǎn)生三次諧波351nm輻射[J];激光與光電子學(xué)進(jìn)展;2001年01期
10 錢列加;寬頻帶激光的啁啾匹配型三次諧波轉(zhuǎn)換[J];光學(xué)學(xué)報(bào);1995年06期
相關(guān)會(huì)議論文 前4條
1 何滔;黃天文;童松;;深溪溝水電站發(fā)電機(jī)組三次諧波定值整定優(yōu)化分析[A];第十九次中國水電設(shè)備學(xué)術(shù)討論會(huì)論文集[C];2013年
2 朱長(zhǎng)軍;秦元東;楊宏;龔旗煌;;空氣中飛秒強(qiáng)激光三次諧波的產(chǎn)生[A];第四屆全國光學(xué)前沿問題研討會(huì)論文摘要集[C];1999年
3 孫韶光;吳恩遠(yuǎn);;民用建筑中三次諧波的產(chǎn)生抑制及防范措施[A];2005年度山東建筑學(xué)會(huì)優(yōu)秀論文集[C];2005年
4 李娟;林鋒;;一起CVT二次短路引起的故障分析[A];全國大中型水電廠技術(shù)協(xié)作網(wǎng)技術(shù)交流文集(十三)水電廠改造專集[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 段昊;基于三次諧波的晶閘管控制電抗器保護(hù)[D];山東大學(xué);2012年
2 王凱;三次諧波法無傳感器控制的高速永磁無刷直流電機(jī)的研究[D];浙江大學(xué);2009年
3 吳洪;雙脈沖誘導(dǎo)下光絲中的紫外諧波產(chǎn)生及其光譜調(diào)制[D];華東師范大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 尤文超;基于周期極化鈮酸鋰晶體的級(jí)聯(lián)非線性效應(yīng)研究[D];天津理工大學(xué);2015年
2 吳亭亭;基于表面等離子體狹縫波導(dǎo)的三次諧波研究[D];哈爾濱工業(yè)大學(xué);2014年
3 楊鐵軍;氮?dú)庵蟹枪簿聚焦雙光束三次諧波增強(qiáng)的實(shí)驗(yàn)研究[D];華東師范大學(xué);2008年
4 季來林;高功率激光驅(qū)動(dòng)器寬帶三次諧波轉(zhuǎn)換研究[D];中國工程物理研究院;2006年
5 李海寧;氣體介質(zhì)中等離子體通道的三次諧波研究[D];華東師范大學(xué);2007年
6 闕善材;同步發(fā)電機(jī)三次諧波與勵(lì)磁匹配的研究[D];南昌大學(xué);2007年
7 安斕;二階級(jí)聯(lián)非線性光頻轉(zhuǎn)換中的能量完全轉(zhuǎn)換[D];陜西師范大學(xué);2014年
8 楊義勝;寬帶高效的三次諧波轉(zhuǎn)換技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2006年
,本文編號(hào):1624733
本文鏈接:http://sikaile.net/kejilunwen/wltx/1624733.html