相關(guān)向量機(jī)在光纖預(yù)警系統(tǒng)模式識(shí)別中的應(yīng)用
發(fā)布時(shí)間:2018-03-16 03:00
本文選題:光纖預(yù)警 切入點(diǎn):模式識(shí)別 出處:《天津大學(xué)學(xué)報(bào)(自然科學(xué)與工程技術(shù)版)》2014年12期 論文類(lèi)型:期刊論文
【摘要】:由于傳統(tǒng)模式識(shí)別方法存在過(guò)學(xué)習(xí)、訓(xùn)練時(shí)間長(zhǎng)等缺陷,不能滿(mǎn)足光纖預(yù)警系統(tǒng)實(shí)時(shí)在線(xiàn)監(jiān)測(cè)的要求.相關(guān)向量機(jī)能夠克服傳統(tǒng)方法的缺點(diǎn),識(shí)別精度高,向量機(jī)個(gè)數(shù)需求少,因此,將相關(guān)向量機(jī)應(yīng)用于光纖預(yù)警系統(tǒng)模式識(shí)別中,采用小波能譜和小波信息熵的特征提取方法,在測(cè)試階段采用有向無(wú)環(huán)圖的方法進(jìn)行多類(lèi)識(shí)別.通過(guò)對(duì)威脅管道安全的事件進(jìn)行實(shí)驗(yàn),識(shí)別精度達(dá)到92.67%,向量機(jī)個(gè)數(shù)只有2個(gè),驗(yàn)證了相關(guān)向量機(jī)方法應(yīng)用于光纖預(yù)警系統(tǒng)的可行性和有效性.
[Abstract]:Because of the shortcomings of traditional pattern recognition methods, such as learning and long training time, it can not meet the requirements of real-time on-line monitoring of optical fiber early warning system. Correlation vector machines can overcome the shortcomings of traditional methods, and the recognition accuracy is high, and the number of vector machines needs less. Therefore, correlation vector machine is applied to pattern recognition of optical fiber early warning system. Wavelet spectrum and wavelet information entropy are used to extract features. In the testing stage, the method of directed acyclic graph is used to identify many kinds of information. Through the experiments on the events threatening the safety of pipelines, the recognition accuracy is 92.67, and the number of vector machines is only 2. The feasibility and effectiveness of the application of correlation vector machine in optical fiber early warning system are verified.
【作者單位】: 天津大學(xué)精密測(cè)試技術(shù)與儀器國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(61240038)
【分類(lèi)號(hào)】:TP212;TN911.7
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前1條
1 袁浩東;陳宏;侯亞丁;;基于全矢小波包能量熵的滾動(dòng)軸承智能診斷[J];機(jī)械設(shè)計(jì)與制造;2012年02期
【共引文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前6條
1 李浩;董辛e,
本文編號(hào):1618006
本文鏈接:http://sikaile.net/kejilunwen/wltx/1618006.html
最近更新
教材專(zhuān)著