天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于LabVIEW的心音信號(hào)分類(lèi)識(shí)別系統(tǒng)設(shè)計(jì)

發(fā)布時(shí)間:2018-02-27 14:32

  本文關(guān)鍵詞: 心音 LabVIEW 預(yù)處理模塊 特征提取模塊 模型訓(xùn)練與識(shí)別模塊 出處:《重慶大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文


【摘要】:心血管疾病已給人類(lèi)帶來(lái)了新的嚴(yán)峻挑戰(zhàn),并已經(jīng)成為全球性公共衛(wèi)生問(wèn)題。心音是心臟和心血管系統(tǒng)機(jī)械運(yùn)動(dòng)狀況的反映,因此,心音檢測(cè)逐步成為臨床輔助診斷心血管疾病的有效方法之一。對(duì)心音信號(hào)的臨床檢測(cè)常用方法是心音聽(tīng)診和心音圖,但是心音聽(tīng)診技術(shù)容易受到人耳聽(tīng)力靈敏度和臨床醫(yī)師主觀經(jīng)驗(yàn)的影響,心音圖能夠彌補(bǔ)心音聽(tīng)診的一些不足,但是它也存在著一些缺點(diǎn),在一定程度上限制了它的應(yīng)用。近年來(lái),隨著計(jì)算機(jī)和信號(hào)處理應(yīng)用的逐步推廣,心音分析儀的設(shè)計(jì)與開(kāi)發(fā)已成為心音分析領(lǐng)域的發(fā)展趨勢(shì)。目前出現(xiàn)的心音分析儀多數(shù)雖然可以對(duì)心音進(jìn)行簡(jiǎn)單的時(shí)頻分析,但是基本上都不具有對(duì)心音的分類(lèi)識(shí)別功能,因此,心音分析儀的功能有待于進(jìn)一步完善。鑒于此,本文在LabVIEW平臺(tái)上設(shè)計(jì)了一款心音分類(lèi)識(shí)別系統(tǒng)。 本文首先給出了系統(tǒng)設(shè)計(jì)的整體方案,該系統(tǒng)一共分為三個(gè)子系統(tǒng):預(yù)處理模塊、特征提取模塊、模型訓(xùn)練與識(shí)別模塊。預(yù)處理模塊,又分為以下四個(gè)模塊:去噪模塊、預(yù)加重模塊、分幀加窗模塊和端點(diǎn)檢測(cè)模塊。其中,,去噪模塊是利用小波變換去噪算法來(lái)設(shè)計(jì)的,通過(guò)實(shí)驗(yàn)確定了小波母函數(shù)、分解尺度和閾值的合適選。活A(yù)加重模塊是通過(guò)一個(gè)一階數(shù)字濾波器來(lái)實(shí)現(xiàn)的;利用哈明窗設(shè)計(jì)了分幀加窗模塊;端點(diǎn)檢測(cè)模塊是基于短時(shí)能量和短時(shí)過(guò)零率的原理來(lái)實(shí)現(xiàn)的。 其次,在特征參數(shù)提取模塊,本文介紹Mel頻率倒譜系數(shù)及對(duì)其改進(jìn)的其它四個(gè)參數(shù):Mel頻率倒譜系數(shù)結(jié)合其一階差分系數(shù)、Mel頻率倒譜系數(shù)結(jié)合其Delta特征、小波包變換改進(jìn)的Mel頻率倒譜系數(shù)、小波包變換改進(jìn)的Mel頻率倒譜系數(shù)結(jié)合其一階差分系數(shù)(DWPTMFCC+ΔDWPTMFCC)的提取原理,同時(shí)詳細(xì)分析了它們?cè)贚abVIEW平臺(tái)上提取的難點(diǎn)并給出了解決方案。 最后,在模型訓(xùn)練與識(shí)別模塊,本文選取常見(jiàn)的識(shí)別模型——高斯混合模型(GMM)用于心音信號(hào)的分類(lèi)識(shí)別。介紹了GMM的原理,分析了傳統(tǒng)GMM的參數(shù)初始化算法K-means算法存在的缺點(diǎn)和不足,針對(duì)此,提出了三種算法:近似模糊C均值聚類(lèi)算法、加權(quán)模糊C均值聚類(lèi)算法和加權(quán)可選擇模糊C均值聚類(lèi)算法(WOFCM)對(duì)傳統(tǒng)的GMM加以改進(jìn)。此模塊的關(guān)鍵點(diǎn)是這四個(gè)識(shí)別模型的訓(xùn)練過(guò)程與識(shí)別過(guò)程在LabVIEW平臺(tái)上的實(shí)現(xiàn)與設(shè)計(jì)。 將以上各個(gè)子模塊集成在一起,就可以完成最終整體系統(tǒng)的設(shè)計(jì)。從特征參數(shù)和識(shí)別模型這兩個(gè)角度對(duì)設(shè)計(jì)的系統(tǒng)進(jìn)行測(cè)試,即對(duì)本文選取的臨床上采集的正常心音信號(hào)和二尖瓣狹窄、主動(dòng)脈瓣狹窄、主動(dòng)脈瓣關(guān)閉不全、室間隔缺損、肺動(dòng)脈瓣狹窄、心律不齊、二尖瓣關(guān)閉不全、S1分裂、S2分裂9類(lèi)病理信號(hào)進(jìn)行分類(lèi)識(shí)別,綜合考慮識(shí)別率和識(shí)別時(shí)間,當(dāng)DWPTMFCC+ΔDWPTMFCC作為特征參數(shù)和WOFCM改進(jìn)得到的GMM作為識(shí)別模型時(shí)表現(xiàn)出最為優(yōu)越的識(shí)別性能,尤其是對(duì)異常心音信號(hào)而言,提高程度更為顯著。因此,利用該參數(shù)和模型對(duì)最初設(shè)計(jì)的整個(gè)系統(tǒng)進(jìn)行了簡(jiǎn)化處理,得到了最終的心音分類(lèi)識(shí)別系統(tǒng),這對(duì)目前的心音分析儀的功能進(jìn)行進(jìn)一步的補(bǔ)充完善,在研究心臟活動(dòng)和早期的臨床心血管疾病的診斷中有潛在的應(yīng)用價(jià)值。
[Abstract]:Cardiovascular disease has brought new challenges, and has become a global public health problem. The heart sound is reflected in the heart and cardiovascular system of mechanical motion so that the heart sound detection has gradually become one of the effective methods for clinical diagnosis of cardiovascular disease. The common clinical detection method of heart sound signal is auscultation and phonocardiogram, influence but auscultation technique is vulnerable to human hearing sensitivity and the clinician subjective experience, PCG can remedy some shortcomings of auscultation, but it also has some shortcomings, which limits its application to some extent. In recent years, with the popularization of computer and signal processing applications, design and development of heart sound analyzer has a trend in the field of heart sound analysis. Although the majority of the heart sound analysis can be carried out at the frequency of heart sound simple However, the function of heart sound analyzer needs to be further improved. In view of this, a heart sound classification and recognition system is designed on the LabVIEW platform.
This paper first gives the overall scheme of system design, the system is divided into three subsystems: pre-processing module, feature extraction module, model training and recognition module. The pretreatment module, is divided into the following four modules: denoising module, preprocessing module, window module and endpoint detection module. The denoising module is to design the denoising algorithm using wavelet transform, wavelet function was determined by the experiment, the appropriate selection of scale and threshold decomposition; preprocessing module is realized by a digital filter; design of window module using Hamming window; endpoint detection module is the principle of short time energy and short-time zero crossing rate based.
Secondly, in the feature extraction module parameters, this paper introduces the Mel frequency cepstrum coefficient and the improvement of the other four parameters: the first order differential coefficient with Mel frequency cepstral coefficients, Mel frequency cepstral coefficients with the Delta feature and Mel frequency cepstrum coefficients of wavelet packet transform is improved, the first-order differential coefficient with frequency of Mel cepstrum coefficients of wavelet packet transform improved (DWPTMFCC+ DWPTMFCC) extraction principle, we analyze the problems and give them the extraction on the LabVIEW platform solutions.
Finally, in the model training and recognition module, this paper selects the recognition of Gauss mixture model (GMM) model commonly used for classification and recognition of heart sound signals. This paper introduces the principle of GMM, analyzes the existing parameter initialization algorithm of traditional K-means algorithm GMM the shortcomings and deficiencies, in view of this, we proposed three kinds of algorithms: approximate fuzzy C means clustering algorithm, weighted fuzzy C means clustering algorithm and weighted fuzzy C mean clustering algorithm (WOFCM) for the GMM to be improved. The key point of this module is the design and realization process of training and recognition of the four identification model on the LabVIEW platform.
Integration of the above sub modules together, we can achieve the design of the whole system. The final design of the testing system from the two aspects of feature parameters and recognition model, namely to collect clinical selected on the normal heart sound and mitral stenosis, aortic stenosis, aortic insufficiency, ventricular septal defect, arrhythmia, pulmonary valve stenosis, mitral regurgitation, S1 division, S2 division of 9 kinds of pathological signal classification, considering the recognition rate and the time when the DWPTMFCC+ Delta DWPTMFCC as characteristic parameters and WOFCM improved GMM as the recognition model showing the most superior recognition performance, especially in terms of abnormal heart sound signal, improving the degree is more significant. Therefore, the model parameters and the initial design of the whole system is simplified, the final classification of heart sound recognition system It will further improve the function of the current heart sound analyzer, and has potential application value in the study of cardiac activity and early clinical cardiovascular disease.

【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN911.7

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 肖儀華,裴馭力,曹澤翰,周世勇,肖守中;基于筆記本計(jì)算機(jī)的心音分析儀[J];北京生物醫(yī)學(xué)工程;1999年01期

2 艾爾肯;秦永志;;論患者隱私權(quán)[J];法治研究;2009年09期

3 但春梅;何為;周靜;闕小生;;基于LabVIEW的心音心電同步采集與實(shí)時(shí)播放[J];生物醫(yī)學(xué)工程學(xué)雜志;2008年06期

4 徐昆良;杜海濤;全海燕;王威廉;;基于LabVIEW的生物醫(yī)學(xué)信號(hào)數(shù)據(jù)采集程序設(shè)計(jì)[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年S1期

5 朱蒂;周酥;楊啟輝;吳效明;;基于小波變換的心音分析系統(tǒng)設(shè)計(jì)[J];醫(yī)療衛(wèi)生裝備;2012年01期

6 張孝桂;何為;周靜;李杰;石小波;;基于嵌入式系統(tǒng)的便攜式心音分析儀的研究[J];儀器儀表學(xué)報(bào);2007年02期

7 王文輝,陳端榮,常蘊(yùn),田志芬,施民;便攜式心音分析儀的研制[J];中國(guó)醫(yī)療器械雜志;1994年01期

8 王衛(wèi)華;;聽(tīng)診器的發(fā)展[J];物理教學(xué)探討;2009年08期



本文編號(hào):1543066

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/wltx/1543066.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶062c5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产熟女高清一区二区| 99热中文字幕在线精品| 国产精品日韩精品一区| 日韩不卡一区二区在线| 欧美日韩一区二区综合| 日本少妇中文字幕不卡视频| 日韩一区二区三区四区乱码视频| 日本高清加勒比免费在线| 国产精品一区二区三区欧美| 国产成人精品在线一区二区三区| 色婷婷中文字幕在线视频| 久热这里只有精品九九| 少妇特黄av一区二区三区| 欧美精品专区一区二区| 激情综合五月开心久久| 亚洲精品中文字幕在线视频| 老司机精品视频在线免费看| 丝袜人妻夜夜爽一区二区三区| 中文字幕久久精品亚洲乱码| 国产精品欧美日韩中文字幕| 好吊妞视频这里有精品| 中文字幕禁断介一区二区| 九九蜜桃视频香蕉视频| 国产又粗又爽又猛又黄的| 欧美黑人巨大一区二区三区| 亚洲一区二区精品免费| 激情综合网俺也狠狠地| 中文字幕亚洲精品乱码加勒比| 国产精品激情对白一区二区| 国产老熟女超碰一区二区三区| 欧美欧美欧美欧美一区| 深夜视频成人在线观看| 在线视频三区日本精品| 午夜福利视频偷拍91| 九九热这里只有精品视频| 欧美多人疯狂性战派对| 欧美日韩国产另类一区二区| 日韩高清一区二区三区四区| 欧美日韩在线视频一区| 国产精品亚洲综合色区韩国| 久久少妇诱惑免费视频|