天線(xiàn)遠(yuǎn)場(chǎng)測(cè)量系統(tǒng)的分析與研究
發(fā)布時(shí)間:2018-01-18 06:21
本文關(guān)鍵詞:天線(xiàn)遠(yuǎn)場(chǎng)測(cè)量系統(tǒng)的分析與研究 出處:《西安電子科技大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 遠(yuǎn)場(chǎng)測(cè)量系統(tǒng) 天線(xiàn)測(cè)量 誤差分析 對(duì)數(shù)周期天線(xiàn)
【摘要】:在遠(yuǎn)場(chǎng)天線(xiàn)測(cè)量系統(tǒng)中,傳統(tǒng)架設(shè)天線(xiàn)的方式,自動(dòng)化程度低,人工操作流程相當(dāng)費(fèi)時(shí),從而造成測(cè)量效率低下,所以需要研究新技術(shù)設(shè)備的高效率測(cè)量系統(tǒng)。本文研究的系統(tǒng)是在微波暗室中可實(shí)現(xiàn)0.5GHz~40GHz各類(lèi)型雷達(dá)以及雷達(dá)對(duì)抗裝備天線(xiàn)遠(yuǎn)場(chǎng)方向圖、增益等參數(shù)進(jìn)而實(shí)現(xiàn)雷達(dá)整機(jī)性能的精確測(cè)量。自動(dòng)化天線(xiàn)測(cè)量系統(tǒng)通過(guò)計(jì)算機(jī)編程,進(jìn)而完成對(duì)發(fā)射源頻率、輸出功率、工作模式等參數(shù)的設(shè)置,同時(shí)控制轉(zhuǎn)臺(tái)各個(gè)軸的轉(zhuǎn)動(dòng),發(fā)射源通過(guò)發(fā)射天線(xiàn)發(fā)射信號(hào),信號(hào)到達(dá)接收天線(xiàn)后,由于空間中信號(hào)能量的損耗,需要經(jīng)過(guò)低聲噪放大器抬高信號(hào)功率,通過(guò)高頻信號(hào)線(xiàn)到達(dá)矢網(wǎng)儀,采集信號(hào)按時(shí)間角度的方式顯示出來(lái)。本文還對(duì)天線(xiàn)測(cè)量的基本方法進(jìn)行研究。在保證室內(nèi)遠(yuǎn)場(chǎng)距離R=35m,在0.5GHz~40GHz情況下,系統(tǒng)使用旋轉(zhuǎn)天線(xiàn)的方法測(cè)繪出方向圖,標(biāo)準(zhǔn)天線(xiàn)已標(biāo)定好增益值,我們?cè)诎凳覂?nèi)還通過(guò)搭建三天線(xiàn)測(cè)量系統(tǒng)驗(yàn)證標(biāo)準(zhǔn)天線(xiàn)的增益,天線(xiàn)安裝高度H為2.6m,收發(fā)天線(xiàn)之間的間距R是12.68m,滿(mǎn)足遠(yuǎn)場(chǎng)測(cè)量距離,效果良好。隨后使用自動(dòng)化測(cè)量系統(tǒng)中使用比較法測(cè)出待測(cè)天線(xiàn)的增益,接著對(duì)系統(tǒng)所處環(huán)境,各個(gè)子系統(tǒng)的組成以及它們各自功能深入的研究,還有軟件功能的具體實(shí)現(xiàn)給出了詳細(xì)的說(shuō)明。對(duì)自動(dòng)化遠(yuǎn)場(chǎng)測(cè)量系統(tǒng)的誤差分析主要是對(duì)方向圖和增益的誤差分析。方向圖誤差從測(cè)量距離、測(cè)量環(huán)境和角度測(cè)量三個(gè)方面分析,增益誤差從極化失配、阻抗失配、收發(fā)天線(xiàn)間的耦合和相位中心不重合的方面分析,主要是對(duì)有限測(cè)量距離引入的誤差進(jìn)行分析,得出了增益相對(duì)誤差與天線(xiàn)尺寸、工作頻率以及暗室測(cè)量間距的關(guān)系變化曲線(xiàn)。本文設(shè)計(jì)研究了對(duì)數(shù)周期偶極子天線(xiàn),帶寬是0.2GHz~2GHz,使用HFSS13.0建模,對(duì)模型進(jìn)行仿真分析計(jì)算,得出增益和方向圖,與在測(cè)量系統(tǒng)中實(shí)際測(cè)量值進(jìn)行對(duì)比分析,結(jié)果符合預(yù)期的設(shè)想。
[Abstract]:In the far-field antenna measurement system, the traditional way of setting up antenna is of low degree of automation, and the manual operation process is time-consuming, which results in low efficiency of measurement. Therefore, it is necessary to study the high efficiency measurement system of the new technology and equipment. The system studied in this paper can realize 0.5 GHz ~ 40GHz radar and radar countermeasure equipment antenna far-field pattern in the microwave darkroom. The automatic antenna measurement system is programmed by computer to set the parameters such as source frequency, output power, working mode and so on. At the same time, the rotation of each axis of the turntable is controlled. The transmitter transmits signals by transmitting antennas. After the signal reaches the receiving antenna, because of the loss of the signal energy in the space, the signal power needs to be raised by a low noise amplifier. Through the high-frequency signal line to reach the vector network, the collected signal is displayed in the way of time angle. The basic method of antenna measurement is also studied in this paper, and the indoor far field distance is guaranteed to be 35 m. In the case of 0.5GHz or 40GHz, the system uses the method of rotating antenna to draw the pattern, and the gain value of the standard antenna has been calibrated. The gain of the standard antenna is verified by building a three-antenna measurement system in the darkroom. The antenna installation height H is 2.6 m and the distance between the receiving and transmitting antennas R is 12.68 m, which meets the distance of far field measurement. The result is good. Then the gain of antenna to be tested is measured by comparison method in the automatic measurement system. Then the environment of the system, the composition of each subsystem and their respective functions are deeply studied. The error analysis of the automatic far field measurement system is mainly the error analysis of the direction diagram and the gain. The pattern error is measured from the distance. The gain error is analyzed from the aspects of polarization mismatch, impedance mismatch, coupling between transceiver antennas and non-coincidence of phase center. The error caused by the limited measurement distance is analyzed, and the relative gain error and antenna size are obtained. In this paper, the logarithmic periodic dipole antenna is designed and studied. The bandwidth is 0.2GHz and 2GHz. HFSS13.0 is used to model the antenna. The model is simulated and calculated, and the gain and pattern are obtained. The results are compared with the actual measured values in the measurement system. The results are in line with the expected assumption.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:TN820
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 陳紅宇;柴舜連;王生水;毛鈞杰;;印刷對(duì)數(shù)周期天線(xiàn)的設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2009年09期
,本文編號(hào):1439820
本文鏈接:http://sikaile.net/kejilunwen/wltx/1439820.html
最近更新
教材專(zhuān)著